Bài 3.25 trang 124 SBT đại số và giải tích 11


Giải bài 3.25 trang 124 sách bài tập đại số và giải tích 11. Cho cấp số cộng với...

Đề bài

Cho cấp số cộng với \({u_1} =  - 2,{u_{19}} = 52\). Tổng của \(20\) số hạng đầu là:

A. \(1060\)                       B. \( - 570\)

C. \(530\)                         D. \( - 530\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) tìm \(d\).

Sử dụng công thức \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\) tính tổng \(n\) số hạng đầu.

Lời giải chi tiết

Ta có: \({u_{19}} = {u_1} + 18d\) \( \Leftrightarrow 52 =  - 2 + 18d \Leftrightarrow d = 3\).

Khi đó \({S_{20}} = \dfrac{{20.\left[ {2.\left( { - 2} \right) + \left( {20 - 1} \right).3} \right]}}{2} = 530\).

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Cấp số cộng

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài