Bài 3.24 trang 124 SBT đại số và giải tích 11


Giải bài 3.24 trang 124 sách bài tập đại số và giải tích 11. Cho cấp số cộng chứng minh rằng nếu...

Đề bài

Hãy chọn cấp số cộng trong các dãy số \(\left( {{u_n}} \right)\) sau :

A. \({u_n} = {2^n} + 1\)

B. \({u_n} = \dfrac{{{3^n}}}{n}\)

C. \({u_n} = 5n\)

D. \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + n\,voi\,n \ge 1\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) là CSC nếu \({u_{n + 1}} - {u_n} = d\) không đổi.

Lời giải chi tiết

Đáp án C : \({u_{n + 1}} - {u_n} = 5\left( {n + 1} \right) - 5n = 5\) nên làm cấp số cộng công sai \(d = 5\) và số hạng đầu \({u_1} = 5\).

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Cấp số cộng

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài