Bài 3.20 trang 124 SBT đại số và giải tích 11>
Giải bài 3.20 trang 124 sách bài tập đại số và giải tích 11. Tính số hạng đầu u1 và công sai d của cấp số cộng (un) biết :...
Tính số hạng đầu \({u_1}\) và công sai d của cấp số cộng \(\left( {{u_n}} \right),\) biết :
LG a
\(\left\{ \begin{array}{l}{u_1} + 2{u_5} = 0\\{S_4} = 14\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
Lời giải chi tiết:
\(\left\{ \begin{array}{l}{u_1} + 2{u_5} = 0\\{S_4} = 14\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2.\left( {{u_1} + 4d} \right) = 0\\\dfrac{{4\left( {2{u_1} + 3d} \right)}}{2} = 14\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3{u_1} + 8d = 0\\2{u_1} + 3d = 7\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d = - 3\end{array} \right.\)
LG b
\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Lời giải chi tiết:
\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 6d = 19\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\)
LG c
\(\left\{ \begin{array}{l}{u_1} + {u_5} - {u_3} = 10\\{u_1} + {u_6} = 7\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Lời giải chi tiết:
\(\left\{ \begin{array}{l}{u_1} + {u_5} - {u_3} = 10\\{u_1} + {u_6} = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 4d - {u_1} - 2d = 10\\{u_1} + {u_1} + 5d = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d = 10\\2{u_1} + 5d = 7\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 36\\d = - 13\end{array} \right.\)
LG d
\(\left\{ \begin{array}{l}{u_7} - {u_3} = 8\\{u_2}.{u_7} = 75\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Lời giải chi tiết:
\(\left\{ \begin{array}{l}{u_7} - {u_3} = 8\\{u_2}.{u_7} = 75\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6d - {u_1} - 2d = 8\\\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}4d = 8\\u_1^2 + 7d.{u_1} + 6{d^2} = 75\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}d = 2\\u_1^2 + 14{u_1} - 51 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}d = 2\\{u_1} = 3,{u_1} = - 17\end{array} \right.\).
Vậy \({u_1} = 3,d = 2\) hoặc \({u_1} = - 17,d = 2.\)
Loigiaihay.com
- Bài 3.21 trang 124 SBT đại số và giải tích 11
- Bài 3.22 trang 124 SBT đại số và giải tích 11
- Bài 3.23 trang 124 SBT đại số và giải tích 11
- Bài 3.24 trang 124 SBT đại số và giải tích 11
- Bài 3.25 trang 124 SBT đại số và giải tích 11
>> Xem thêm