Bài 3.20 trang 124 SBT đại số và giải tích 11


Giải bài 3.20 trang 124 sách bài tập đại số và giải tích 11. Tính số hạng đầu u1 và công sai d của cấp số cộng (un) biết :...

Lựa chọn câu để xem lời giải nhanh hơn

Tính số hạng đầu \({u_1}\) và công sai d của cấp số cộng \(\left( {{u_n}} \right),\) biết :

LG a

\(\left\{ \begin{array}{l}{u_1} + 2{u_5} = 0\\{S_4} = 14\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)

Lời giải chi tiết:

\(\left\{ \begin{array}{l}{u_1} + 2{u_5} = 0\\{S_4} = 14\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2.\left( {{u_1} + 4d} \right) = 0\\\dfrac{{4\left( {2{u_1} + 3d} \right)}}{2} = 14\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3{u_1} + 8d = 0\\2{u_1} + 3d = 7\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d =  - 3\end{array} \right.\)

LG b

\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết:

\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 6d = 19\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\)

LG c

\(\left\{ \begin{array}{l}{u_1} + {u_5} - {u_3} = 10\\{u_1} + {u_6} = 7\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết:

\(\left\{ \begin{array}{l}{u_1} + {u_5} - {u_3} = 10\\{u_1} + {u_6} = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 4d - {u_1} - 2d = 10\\{u_1} + {u_1} + 5d = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d = 10\\2{u_1} + 5d = 7\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 36\\d =  - 13\end{array} \right.\)

LG d

\(\left\{ \begin{array}{l}{u_7} - {u_3} = 8\\{u_2}.{u_7} = 75\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Công thức tính tổng \(n\) số hạng đầu của cấp số cộng: \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết:

\(\left\{ \begin{array}{l}{u_7} - {u_3} = 8\\{u_2}.{u_7} = 75\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6d - {u_1} - 2d = 8\\\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}4d = 8\\u_1^2 + 7d.{u_1} + 6{d^2} = 75\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}d = 2\\u_1^2 + 14{u_1} - 51 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}d = 2\\{u_1} = 3,{u_1} =  - 17\end{array} \right.\).

Vậy \({u_1} = 3,d = 2\) hoặc \({u_1} =  - 17,d = 2.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Cấp số cộng

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.