Bài 3.19 trang 124 SBT đại số và giải tích 11


Giải bài 3.19 trang 124 sách bài tập đại số và giải tích 11. Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng?...

Lựa chọn câu để xem lời giải nhanh hơn

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số nào là cấp số cộng ?

LG a

\({u_n} = 3n - 1\)

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\)

Lời giải chi tiết:

\({u_{n + 1}} - {u_n} = 3\left( {n + 1} \right) - 1 - (3n - 1)\)\(=3n+3-1-3n+1 = 3.\)

Vì \({u_{n + 1}} = {u_n} + 3\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với:

\({u_1} =3.1-1= 2,d = 3.\)

LG b

\({u_n} = {2^n} + 1\)

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\).

Lời giải chi tiết:

\({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - {2^n} - 1 = {2^n}.\)

Vì \({2^n}\) không là hằng số nên dãy số \(\left( {{u_n}} \right)\) không phải là cấp số cộng.

LG c

\({u_n} = {\left( {n + 1} \right)^2} - {n^2}\)

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\).

Lời giải chi tiết:

Ta có \({u_n} = 2n + 1.\)

Vì \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 1 - (2n + 1)\) \(=2n+2+1-2n-1 = 2,\) nên dãy đã cho là cấp số cộng với \({u_1} = 2.1+1=3;d = 2.\)

LG d

\(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 1 - {u_n}\end{array} \right..\)

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
{u_1} = 3\\
{u_2} = 1 - {u_1} = 1 - 3 = - 2\\
{u_3} = 1 - {u_2} = 1 - \left( { - 2} \right) = 3\\
\Rightarrow {u_3} - {u_2} = 3 - \left( { - 2} \right) = 5\\
{u_2} - {u_1} = - 2 - 3 = - 5
\end{array}\)

Do đó \({u_3} - {u_2} \ne {u_2} - {u_1}\) nên dãy đã cho không là CSC.

Loigiaihay.com


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí