Bài 3.22 trang 124 SBT đại số và giải tích 11


Giải bài 3.22 trang 124 sách bài tập đại số và giải tích 11. Tìm cấp số cộng biết...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm cấp số cộng \(\left( {{u_n}} \right)\) biết

LG a

\(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 27\\u_1^2 + u_2^2 + u_3^2 = 275\end{array} \right.\)

Phương pháp giải:

Sử dụng tính chất \({u_{k - 1}} + {u_{k + 1}} = 2{u_k}\).

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 27{\rm{      }}\left( 1 \right)\\u_1^2 + u_2^2 + u_3^2 = 275{\rm{   }}\left( 2 \right)\end{array} \right.\)

Ta có: 

\(\begin{array}{l}
{u_1} + {u_2} + {u_3} = 27\\
\Leftrightarrow \left( {{u_1} + {u_3}} \right) + {u_2} = 27\\
\Leftrightarrow 2{u_2} + {u_2} = 27\\
\Leftrightarrow 3{u_2} = 27\\
\Leftrightarrow {u_2} = 9
\end{array}\)

Thay \({u_2} = 9\) vào (1) và (2) ta được \(\left\{ \begin{array}{l}{u_1} + {u_3} = 18\,\,(3)\\u_1^2 + u_3^2 = 194\,\,(4)\end{array} \right.\)

\(\left( 3 \right) \Rightarrow {u_3} = 18 - {u_1}\) thay vào (4) ta được:

\(\begin{array}{l}u_1^2 + {\left( {18 - {u_1}} \right)^2} = 194\\ \Leftrightarrow u_1^2 + 324 - 36{u_1} + u_1^2 = 194\\ \Leftrightarrow 2u_1^2 - 36{u_2} + 130 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{u_1} = 5\\{u_1} = 13\end{array} \right.\end{array}\)

Với \({u_1} = 5 \Rightarrow {u_3} = 13\) ta có CSC \(5;9;13\)

Với \({u_1} = 13 \Rightarrow {u_3} = 5\) ta có CSC \(13;9;5\).

Vậy ta có hai cấp số cộng \(5,9,13\) và \(13,9,5.\)

LG b

\(\left\{ \begin{array}{l}{u_1} + {u_2} + ... + {u_n} = a\\u_1^2 + u_2^2 + ... + u_n^2 = {b^2}\end{array} \right.\).

Phương pháp giải:

Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Lời giải chi tiết:

Ta có:

Mặt khác, \(a = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\) \( \Rightarrow 2a = 2n{u_1} + \left( {n - 1} \right)d\) \( \Leftrightarrow {u_1} = \dfrac{{2a - \left( {n - 1} \right)d}}{{2n}}\).

Thay \({u_1}\) vào (1) ta được:

Kết quả \(d =  \pm \sqrt {\dfrac{{12\left( {n{b^2} - {a^2}} \right)}}{{{n^2}\left( {{n^2} - 1} \right)}}} \);\({u_1} = \dfrac{1}{n}\left[ {a - \dfrac{{n\left( {n - 1} \right)}}{2}d} \right]\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Cấp số cộng

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài