Bài 3.17 trang 118 SBT đại số và giải tích 11


Giải bài 3.17 trang 118 sách bài tập đại số và giải tích 11. Hãy chọn dãy số tăng trong các dãy số...

Đề bài

Hãy chọn dãy số tăng trong các dãy số \(\left( {{u_n}} \right)\) sau:

A. \({u_n} =  - 3n + 1\)      B. \({u_n} =  - 2{n^2} + n\)

C. \({u_n} = n + \dfrac{1}{n}\)         D. \({u_n} = \cos n + 1\)

Phương pháp giải - Xem chi tiết

Xét tính tăng giảm của mỗi dãy số bằng cách xét hiệu \({u_{n + 1}} - {u_n}\) hoặc thương \(\dfrac{{{u_{n + 1}}}}{{{u_n}}}\).

Lời giải chi tiết

Đáp án A:

Ta có: \({u_{n + 1}} - {u_n} =  - 3\left( {n + 1} \right) + 1 + 3n - 1\) \( =  - 3 < 0\) nên dãy số giảm.

Đáp án B:

Ta có: \({u_{n + 1}} - {u_n}\) \( =  - 2{\left( {n + 1} \right)^2} + \left( {n + 1} \right) + 2{n^2} - n\) \( =  - 4n - 1 < 0,\forall n \in {\mathbb{N}^*}\) nên dãy số giảm.

Đáp án C:

Ta có: \({u_{n + 1}} - {u_n} = n + 1 + \dfrac{1}{{n + 1}} - n - \dfrac{1}{n}\)\( = 1 + \dfrac{1}{{n + 1}} - \dfrac{1}{n}\) \( = \dfrac{{n\left( {n + 1} \right) + n - n - 1}}{{n\left( {n + 1} \right)}}\)

\( = \dfrac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\)

Do đó dãy số đã cho tăng.

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài