Bài 3.17 trang 118 SBT đại số và giải tích 11


Giải bài 3.17 trang 118 sách bài tập đại số và giải tích 11. Hãy chọn dãy số tăng trong các dãy số...

Đề bài

Hãy chọn dãy số tăng trong các dãy số \(\left( {{u_n}} \right)\) sau:

A. \({u_n} =  - 3n + 1\)      B. \({u_n} =  - 2{n^2} + n\)

C. \({u_n} = n + \dfrac{1}{n}\)         D. \({u_n} = \cos n + 1\)

Phương pháp giải - Xem chi tiết

Xét tính tăng giảm của mỗi dãy số bằng cách xét hiệu \({u_{n + 1}} - {u_n}\) hoặc thương \(\dfrac{{{u_{n + 1}}}}{{{u_n}}}\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Đáp án A:

Ta có: \({u_{n + 1}} - {u_n} =  - 3\left( {n + 1} \right) + 1 + 3n - 1\) \( =  - 3 < 0\) nên dãy số giảm.

Đáp án B:

Ta có: \({u_{n + 1}} - {u_n}\) \( =  - 2{\left( {n + 1} \right)^2} + \left( {n + 1} \right) + 2{n^2} - n\) \( =  - 4n - 1 < 0,\forall n \in {\mathbb{N}^*}\) nên dãy số giảm.

Đáp án C:

Ta có: \({u_{n + 1}} - {u_n} = n + 1 + \dfrac{1}{{n + 1}} - n - \dfrac{1}{n}\)\( = 1 + \dfrac{1}{{n + 1}} - \dfrac{1}{n}\) \( = \dfrac{{n\left( {n + 1} \right) + n - n - 1}}{{n\left( {n + 1} \right)}}\)

\( = \dfrac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\)

Do đó dãy số đã cho tăng.

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí