Bài 3.16 trang 118 SBT đại số và giải tích 11


Giải bài 3.16 trang 118 sách bài tập đại số và giải tích 11. Hãy chọn dãy số bị chặn trong các dãy số ...

Đề bài

Hãy chọn dãy số bị chặn trong các dãy số \(\left( {{u_n}} \right)\) sau:

A. \({u_n} = {n^2} + n - 1\)        B. \({u_n} = {3^n}\)

C. \({u_n} = \sin n + \cos n\)

D. \({u_n} =  - 3{n^2} + 1\)

Phương pháp giải - Xem chi tiết

Đánh giá số hạng tổng quát của từng dãy số và nhận xét.

Lời giải chi tiết

Đáp án A: Dãy số không bị chặn trên vì hàm số bậc hai có hệ số \(a = 1 > 0\) nên không có số \(M\) nào để \({u_n} \le M,\forall n\).

Đáp án B: Dễ thấy \({3^n} > 0\) nhưng không có số \(M\) nào để \({3^n} \le M\).

Đáp án C: Ta có: \(\sin n + \cos n = \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\).

Mà \( - 1 \le \sin \left( {n + \dfrac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2  \le \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right) \le \sqrt 2 \).

Do đó dãy số \(\left( {{u_n}} \right)\) bị chặn.

Đáp án D: Hàm số bậc hai có hệ số \(a < 0\) thì không có số \(m\) nào để \({u_n} \ge m,\forall n\).

Chọn C.

Loigiaihay.com


Bình chọn:
3 trên 6 phiếu

Các bài liên quan: - Bài 2: Dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài