Bài 3.13 trang 118 SBT đại số và giải tích 11


Giải bài 3.13 trang 118 sách bài tập đại số và giải tích 11. Viết năm số hạng đầu của dãy số;...

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right)\) với  \(\left( {{u_n}} \right) = 1 + \left( {n - 1} \right){.2^n}.\)

LG a

Viết năm số hạng đầu của dãy số

Phương pháp giải:

Cho \(n\) nhận lần lượt các giá trị \(1,2,3,4,5\) suy ra \(5\) số hạng đầu

Lời giải chi tiết:

Ta có \(5\) số hạng đầu của dãy là \(1;5;17;49;129\)

LG b

Tìm công thức truy hồi

Phương pháp giải:

Tìm hiệu \({u_{n + 1}} - {u_n}.\)

Lời giải chi tiết:

\({u_{n + 1}} - {u_n}\)  \( = 1 + n{.2^{n + 1}} - 1 - \left( {n - 1} \right){2^n}\) \( = 2n{.2^n} - \left( {n - 1} \right){2^n}\) \( = {2^n}\left( {n + 1} \right)\)

\( \Rightarrow {u_{n + 1}} = {u_n} + {2^n}\left( {n + 1} \right)\)

Vậy \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + \left( {n + 1} \right){2^n}{\rm{ voi }}n \ge 1.\end{array} \right.\)

LG c

Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn dưới.

Phương pháp giải:

Xét dấu \({u_{n + 1}} - {u_n}\) và kết luận.

Lời giải chi tiết:

Dễ thấy \({u_{n + 1}} - {u_n} = \left( {n + 1} \right){.2^n} > 0\) nên dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

Do đó \({u_n} \ge {u_1} = 1,\forall n\) nên dãy đã cho bị chặn dưới.

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài