Bài 2.33 trang 79 SBT đại số và giải tích 11


Giải bài 2.33 trang 79 sách bài tập đại số và giải tích 11. Viết khai triển của (1+x)...

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Viết khai triển của \({\left( {1 + x} \right)^6}\).

Phương pháp giải:

- Viết khai triển của \({(1+x)}^6\) theo công thức nhị thức Niu-tơn:

\({\left( {a + b} \right)^n} \)

\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)

\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Với \(n=6\), \(a=1\), \(b=x\).

Lời giải chi tiết:

Ta có: \((1 + x)^6  \)

\(= C_6^0{x^0} + C_6^1{x^1} + C_6^2{x^2} + C_6^3{x^3} \)

\(C_6^4{x^4}+C_6^5{x^5}+ C_6^6{x^6} \)

\(= 1 + 6x + 15{x^2} + 20{x^3} \)

\(+ 15{x^4} + 6{x^5} + {x^6}\)

LG a

Dùng ba số hạng đầu để tính gần đúng \(1,{01^6}\).

Phương pháp giải:

- Ta tách \(1,01^6=(1+0,01)^6\) sau đó sử dụng công thức khai triển của \({(1+x)}^6=1+6x+15x^2+20x^3\) \(+15x^4+6x^5+x^6\)

- Tính tổng ba số hạng đầu.

Lời giải chi tiết:

Ta có khai triển: \({\left( {1 + x} \right)^6} = 1 + 6x + 15{x^2} + 20{x^3} \)

\(+ 15{x^4} + 6{x^5} + {x^6}\)

Nên \(1,{01^6} = {\left( {1 + 0,01} \right)^6} \approx 1 + 6 \times 0,01\)

\(+ 15 \times {\left( {0,01} \right)^2} = 1,0615\).

LG b

Dùng máy tính để kiểm tra kết quả trên.

Phương pháp giải:

Sử dụng máy tính casio nhấn phép tính \(1,01^6\) để có kết quả.

Lời giải chi tiết:

Dùng máy tính ta nhận được \(1,{01^6} \approx 1,061520151\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Nhị thức Niu-tơn

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài