
Đề bài
Tìm số hạng thứ năm trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}}\), mà trong khai triển đó số mũ của \(x\) giảm dần.
Phương pháp giải - Xem chi tiết
Sử dụng công thức Nhị thức Niu-tơn
\({\left( {a + b} \right)^n} \)
\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)
\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\).
Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\) để thu gọn biểu thức.
Để tìm số hạng thứ \(k+1\) ta cho số mũ của \(x\) bằng \(k\) và tính số hạng thứ \(k+1\).
Lời giải chi tiết
Số hạng tổng quát trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}} \) là:
\( T_{k+1}={C_{10}^k{x^{10 - k}}{{\left( {\dfrac{2}{x}} \right)}^k}} \)
\( = C_{10}^k{x^{10 - k}}.\frac{{{2^k}}}{{{x^k}}} = C_{10}^k{x^{10 - k - k}}{.2^k}\)
\(= C_{10}^k 2^k x^{10 - 2k}\)
Khi đó số hạng thức 5 ứng với k+1=5 hay k=4 là:
\(T_{ 5} = C_{10}^4 2^4 x^{10 - 2.4}\) \(=C_{10}^4 2^4 x^2= 3360{x^2}\)
Vậy \({T_5} = 3360{x^2}\).
Loigiaihay.com
Giải bài 2.33 trang 79 sách bài tập đại số và giải tích 11. Viết khai triển của (1+x)...
Giải bài 2.34 trang 79 sách bài tập đại số và giải tích 11. Trong khai triển của (1+ax)...
Giải bài 2.35 trang 79 sách bài tập đại số và giải tích 11. Tìm a và b...
Giải bài 2.36 trang 79 sách bài tập đại số và giải tích 11. Xác định hệ số của số hạng chứa x...
Giải bài 2.37 trang 79 sách bài tập đại số và giải tích 11. Tập hợp E có n phần tử thì tập hợp con của E...
Giải bài 2.38 trang 79 sách bài tập đại số và giải tích 11. Hệ số của x...
Giải bài 2.39 trang 79 sách bài tập đại số và giải tích 11. Hệ số của x...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: