Bài 2.32 trang 79 SBT đại số và giải tích 11>
Giải bài 2.32 trang 79 sách bài tập đại số và giải tích 11. Tìm số hạng thứ năm trong khai triển...
Đề bài
Tìm số hạng thứ năm trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}}\), mà trong khai triển đó số mũ của \(x\) giảm dần.
Phương pháp giải - Xem chi tiết
Sử dụng công thức Nhị thức Niu-tơn
\({\left( {a + b} \right)^n} \)
\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)
\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\).
Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\) để thu gọn biểu thức.
Để tìm số hạng thứ \(k+1\) ta cho số mũ của \(x\) bằng \(k\) và tính số hạng thứ \(k+1\).
Lời giải chi tiết
Số hạng tổng quát trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}} \) là:
\( T_{k+1}={C_{10}^k{x^{10 - k}}{{\left( {\dfrac{2}{x}} \right)}^k}} \)
\( = C_{10}^k{x^{10 - k}}.\frac{{{2^k}}}{{{x^k}}} = C_{10}^k{x^{10 - k - k}}{.2^k}\)
\(= C_{10}^k 2^k x^{10 - 2k}\)
Khi đó số hạng thức 5 ứng với k+1=5 hay k=4 là:
\(T_{ 5} = C_{10}^4 2^4 x^{10 - 2.4}\) \(=C_{10}^4 2^4 x^2= 3360{x^2}\)
Vậy \({T_5} = 3360{x^2}\).
Loigiaihay.com
- Bài 2.33 trang 79 SBT đại số và giải tích 11
- Bài 2.34 trang 79 SBT đại số và giải tích 11
- Bài 2.35 trang 79 SBT đại số và giải tích 11
- Bài 2.36 trang 79 SBT đại số và giải tích 11
- Bài 2.37 trang 79 SBT đại số và giải tích 11
>> Xem thêm