Bài 2.32 trang 79 SBT đại số và giải tích 11


Đề bài

Tìm số hạng thứ năm trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}}\), mà trong khai triển đó số mũ của \(x\) giảm dần.

Phương pháp giải - Xem chi tiết

Sử dụng công thức Nhị thức Niu-tơn

\({\left( {a + b} \right)^n}  \)

\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)

\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\).

Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\) để thu gọn biểu thức.

Để tìm số hạng thứ \(k+1\) ta cho số mũ của \(x\) bằng \(k\) và tính số hạng thứ \(k+1\).

Lời giải chi tiết

Số hạng tổng quát trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}} \) là:

\( T_{k+1}={C_{10}^k{x^{10 - k}}{{\left( {\dfrac{2}{x}} \right)}^k}} \)

\( = C_{10}^k{x^{10 - k}}.\frac{{{2^k}}}{{{x^k}}} = C_{10}^k{x^{10 - k - k}}{.2^k}\)

\(= C_{10}^k 2^k x^{10 - 2k}\)

Khi đó số hạng thức 5 ứng với k+1=5 hay k=4 là:

\(T_{ 5} = C_{10}^4 2^4 x^{10 - 2.4}\) \(=C_{10}^4 2^4 x^2= 3360{x^2}\)

Vậy \({T_5} = 3360{x^2}\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Nhị thức Niu-tơn

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài