Bài 2.32 trang 43 SBT đại số 10


Đề bài

Giao điểm của parabol \(y = {x^2} + 4x - 6\) và đường thẳng \(y = 2x + 2\) là

A. \(\left( {2;6} \right)\) \(\left( {3;8} \right)\)

B. \(\left( { - 4; - 6} \right)\) \(\left( {1; - 1} \right)\)

C. \(\left( {1; - 1} \right)\) và \(\left( {2;6} \right)\)

D. \(\left( { - 4; - 6} \right)\) và \(\left( {2;6} \right)\)

Phương pháp giải - Xem chi tiết

Tìm hoành độ giao điểm của parabol và đường thẳng dựa vào phương trình hoành độ giao điểm.

Lời giải chi tiết

Phương trình hoành độ giao điểm của parabol và đường thẳng là

\(\begin{array}{l}{x^2} + 4x - 6 = 2x + 2\\ \Leftrightarrow {x^2} + 2x - 8 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x =  - 4}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{y = 6}\\{y =  - 6}\end{array}} \right.\end{array}\)

Vậy giao điểm của parabol \(y = {x^2} + 4x - 6\) và đường thẳng \(y = 2x + 2\) là \(\left( { - 4; - 6} \right)\) và \(\left( {2;6} \right)\)

Đáp án đúng D.

Loigiaihay.com


Bình chọn:
4 trên 3 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.