Bài 2.30 trang 43 SBT đại số 10


Đề bài

Vẽ đồ thị của hàm số \(y = \left| {\dfrac{2}{3}{x^2} - \dfrac{8}{3}x + 2} \right|\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giá trị tuyệt đối và cách vẽ đồ thị đã được học.

Lời giải chi tiết

Vì \(\left| {f(x)} \right| = \left\{ \begin{array}{l}f(x),f(x) \ge 0\\ - f(x),f(x) < 0\end{array} \right.\)

Nên để vẽ đồ thị của hàm số \(y = |f(x)|\) ta vẽ đồ thị của hàm số \(y =f(x)\), sau đó giữ nguyên phần đồ thị ở phía trên trục hoành và lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.

Trong trường hợp này, ta vẽ đồ thị của hàm số \(y = \dfrac{2}{3}{x^2} - \dfrac{8}{3}x + 2\), sau đó giữ nguyên phần đồ thị ứng với các nửa khoảng \(( - \infty ;1]\) và \({\rm{[}}3; + \infty )\).

Lấy đối xứng phần đồ thị ứng với khoảng \((1;3)\) qua trục hoành.

Đồ thị của hàm số \(y = \left| {\dfrac{2}{3}{x^2} - \dfrac{8}{3}x + 2} \right|\) được vẽ trên hình sau (đường nét liền)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.