Bài 1.20 trang 11 SBT đại số 10


Giải bài 1.20 trang 11 sách bài tập đại số 10. Tìm một tích chất đặc trưng cho các phần tử của mỗi tập hợp sau...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm một tích chất đặc trưng cho các phần tử của  mỗi tập hợp sau:

LG a

\(A = {\rm{\{ }}\dfrac{1}{2}{\rm{,}}\dfrac{1}{6}{\rm{,}}\dfrac{1}{{12}},\dfrac{1}{{20}},\dfrac{1}{{30}}{\rm{\} }};\)

Phương pháp giải:

Dự đoán dựa vào kiến thức số học và sử dụng kiến thức về cách xác định tập hợp.

Lời giải chi tiết:

Ta có: \(2=1.2\); \(6=2.3\); \(12=3.4\); \(20=4.5\); \(30=5.6\) 

Suy ra số hạng tổng quát của dãy là \(\dfrac{1}{n(n+1)}\) với \(1 \le n \le 5\)

Vậy \(A = {\rm{\{ }}\dfrac{1}{{n(n + 1)}}{\rm{|n}} \in N,1 \le n \le 5{\rm{\} }};\)

LG b

\(A = {\rm{\{ }}\dfrac{2}{3}{\rm{,}}\dfrac{3}{8}{\rm{,}}\dfrac{4}{{15}},\dfrac{5}{{24}},\dfrac{6}{{35}}{\rm{\} }}{\rm{.}}\)

Phương pháp giải:

Dự đoán dựa vào kiến thức số học và sử dụng kiến thức về cách xác định tập hợp.

Lời giải chi tiết:

Ta có: \(3=2^2-1; 8=3^2-1; 15=4^2-1;\) \( 24=5^2-1; 35=6^2-1\)

Suy ra số hạng tổng quát của dãy là \(\dfrac{n}{{{n^2} - 1}}\) với  \(2 \le n \le 6\)

Vậy \(A = {\rm{\{ }}\dfrac{n}{{{n^2} - 1}}{\rm{|n}} \in N,2 \le n \le 6{\rm{\} }};\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 5 phiếu

Các bài liên quan: - Bài 2: Tập hợp

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài