Bài 1.16 trang 24 SBT đại số và giải tích 11


Giải bài 1.16 trang 24 sách bài tập đại số và giải tích 11. Giải các phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(\tan (2x+45^o) =-1\)

Phương pháp giải:

Phương trình: \(\tan x=\tan \beta^o\) có nghiệm là \(x=\beta^o+k{180}^o ,k\in\mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(-1=\tan({-45}^o)\)

Khi đó: \(\tan(2x+{45}^o)=\tan({-45}^o)\)

\(\Leftrightarrow 2x+{45}^o={-45}^o+k{180}^o ,k\in\mathbb{Z}\)

\( \Leftrightarrow 2x =  - {90^0} + k{180^0} ,k\in\mathbb{Z} \)

\(\Leftrightarrow x={-45}^o+k{90}^o ,k\in\mathbb{Z}\)

Phương trình có nghiệm là:

\(x={-45}^o+k{90}^o ,k\in\mathbb{Z}\).

LG b

\(\cot (x+\dfrac{\pi}{3})=\sqrt{3}\)

Phương pháp giải:

Phương trình: \(\cot x=\cot \alpha\) có nghiệm là \(x=\alpha+k\pi ,k\in\mathbb{Z}\)

Sử dụng: \(\cot \alpha =a\) khi đó \(\tan \alpha=\dfrac{1}{a}\)

Khi đó \(\alpha=\arctan\dfrac{1}{a}=\text{arccot} a\)

Lời giải chi tiết:

Ta có: \(\sqrt{3}=\cot\dfrac{\pi}{6}\)

Khi đó: \(\cot(x+\dfrac{\pi}{3})=\cot\dfrac{\pi}{6}\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k\pi ,k\in\mathbb{Z}\)

\(\Leftrightarrow x=-\dfrac{\pi}{6}+k\pi ,k\in\mathbb{Z}\)

Khi đó phương trình có nghiệm là \(x=-\dfrac{\pi}{6}+k\pi ,k\in\mathbb{Z}\)

LG c

\(\tan (\dfrac{x}{2}-\dfrac{\pi}{4})=\tan\dfrac{\pi}{8}\)

Phương pháp giải:

Phương trình \(\tan x=\tan\alpha\)

Có nghiệm là: \(x=\alpha+k\pi ,k\in\mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(\tan(\dfrac{x}{2}-\dfrac{\pi}{4})=\tan\dfrac{\pi}{8}\)

\(\Leftrightarrow \dfrac{x}{2}-\dfrac{\pi}{4}=\dfrac{\pi}{8}+k\pi ,k\in\mathbb{Z}\)

\( \Leftrightarrow \frac{x}{2} = \frac{{3\pi }}{8} + k\pi ,k\in\mathbb{Z} \)

\(\Leftrightarrow x=\dfrac{3\pi}{4}+k2\pi ,k\in\mathbb{Z}\)

Vậy phương trình có nghiệm là: \(x=\dfrac{3\pi}{4}+k2\pi ,k\in\mathbb{Z}\).

LG d

\(\cot (\dfrac{x}{3}+20^o)=-\dfrac{\sqrt{3}}{3}\).

Phương pháp giải:

Phương trình: \(\cot x=\cot \beta^o\) có nghiệm là \(x=\beta^o+k{180}^o ,k\in\mathbb{Z}\)

Sử dụng: \(\cot \beta^o =a\) khi đó \(\tan \beta^o=\dfrac{1}{a}\)

Khi đó \(\beta^o=\arctan\dfrac{1}{a}=\text{arccot} a\)

Lời giải chi tiết:

Ta có: \(-\dfrac{\sqrt{3}}{3}=\cot(-{60}^o)\)

Khi đó: \(\cot(\dfrac{x}{3}+{20}^o)=\cot(-{60}^o)\)

\(\Leftrightarrow\dfrac{x}{3}+{20}^o=-{60}^o+k{180}^o ,k\in\mathbb{Z}\)

\( \Leftrightarrow \frac{x}{3} =  - {80^0} + k{180^0} ,k\in\mathbb{Z} \)

\(\Leftrightarrow x={-240}^o+k{540}^o ,k\in\mathbb{Z}\)

Vậy nghiệm của phương trình là:

\(x={-240}^o+k{540}^o ,k\in\mathbb{Z}\).

 Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài