Bài 5 trang 45 SGK Giải tích 12


Giải bài 5 trang 45 SGK Giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = 2x^2 + 2mx + m -1\) có đồ thị là \((C_m)\), \(m\) là tham số.

LG a

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 1\)

Phương pháp giải:

Khảo sát và vẽ đồ thị hàm số theo các bước đã được học.

Lời giải chi tiết:

\(y = 2x^2 + 2mx + m -1\) \((C_m)\). Đây là hàm số bậc hai, đồ thị là parabol quay bề lõm lên phía trên.

a) Với \(m = 1\) ta có hàm số: \(y = 2x^2+ 2x.\)

Tập xác định \(D =\mathbb R\)

* Sự biến thiên:

Ta có: \(y'=4x+2.\)
\(\Rightarrow y'=0 \Leftrightarrow  4x + 2 = 0 \Leftrightarrow x = -{{  1} \over 2} \)

+) Hàm số đồng biến trên khoảng \((-{1\over2};+\infty)\), nghịch biến trên khoảng \((-\infty; -{1\over2})\)

+) Cực trị:

    Hàm số đạt cực tiểu tại \(x=-{1\over2}\); \(y_{CT}=-{1\over 2}\)

+) Giới hạn:

   \(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \)

Bảng biến thiên:

*Đồ thị

Đồ thị hàm số giao trục \(Ox\) tại hai điểm \((-1;0)\) và \((0;0)\)

Cắt Oy tại (0;0).

LG b

b) Xác định m để hàm số:

- Đồng biến trên khoảng \((-1, +∞)\)

- Có cực trị trên khoảng \((-1, +∞)\)

Phương pháp giải:

Hàm số đồng biến trên \( (a; \, b)  \Leftrightarrow y' \ge 0\;\;\forall x \ne \left( {a;\;b} \right).\) 

+) Hàm số đồng biến trên \( (a; \, b)  \Leftrightarrow y' \le 0\;\;\forall x \ne \left( {a;\;b} \right).\) 

Lời giải chi tiết:

Tổng quát \(y = 2x^2+ 2mx + m -1\) có tập xác định \(D = \mathbb R\)

Có \(y' = 4x + 2m = 0 \Rightarrow y'=0 \)

\(\Leftrightarrow 4x+2m=0 \Leftrightarrow x = -{{  m} \over 2}\)

Suy ra \(y’ >\) 0 với \(x > -{{  m} \over 2};y' < 0\) với \(x < -{{  m} \over 2}\) , tức là hàm số nghịch biến trên \(( - \infty ;-{{  m} \over 2})\) và đồng biến trên \((-{{ m} \over 2}; + \infty )\)

i) Để hàm số đồng biến trên khoảng \((-1, +∞)\) thì phải có điều kiện \(( - 1;{\rm{ }} + \infty )  \subset  (-{{  m} \over 2}; + \infty )\)

\( \Leftrightarrow -{{ m} \over 2} \le  - 1 \Leftrightarrow m \ge 2\)

ii) Hàm số đạt cực trị tại  \(x = -{{  m} \over 2}\) .

Để hàm số đạt cực trị trong khoảng \((-1; +∞)\), ta phải có:

\(\eqalign{
& {{ - m} \over 2} \in ( - 1, + \infty ) \cr 
& \Leftrightarrow -{{  m} \over 2} > - 1 \Leftrightarrow 1 > {m \over 2} \Leftrightarrow m < 2 \cr} \)

LG c

c) Chứng minh rằng \((C_m)\) luôn cắt trục hoành tại hai điểm phân biệt với mọi \(m\).

Phương pháp giải:

Đồ thị hàm số \((C_m)\) cắt trục hoành tại hai điểm phân biệt với mọi \(m \Leftrightarrow y=f(x)=0\) có hai nghiệm phân biệt với mọi \(m.\)

Lời giải chi tiết:

\((C_m)\) luôn cắt \(Ox\) tại hai điểm phân biệt \(x = -{{ m} \over 2}\)

\(⇔\) phương trình \(2x^2+ 2mx + m – 1 = 0\) có hai nghiệm phân biệt.

Ta có: \(Δ’ = m^2– 2m + 2 \) \(= (m-1)^2+ 1 > 0 ∀m\)

Vậy \((C_m)\) luôn cắt \(O x\) tại hai điểm phân biệt.

Cách khác

Nhận thấy: \( - \frac{{{m^2}}}{2} + m - 1\)\( =  - \frac{1}{2}\left( {{m^2} - 2m + 2} \right)\)\( =  - \frac{1}{2}{\left( {m - 1} \right)^2} - \frac{1}{2} < 0\) với mọi m.

Suy ra, giá trị cực tiểu luôn nhỏ hơn 0 với mọi m.

Dựa vào bảng biến thiên suy ra đường thẳng y = 0 (trục hoành) luôn cắt đồ thị hàm số tại 2 điểm phân biệt (đpcm).

Loigiaihay.com


Bình chọn:
4.1 trên 11 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài