Giải bài 12 trang 47 SGK Giải tích 12


Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là nghiệm của phương trình f’’(x) = 0

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số: \(\displaystyle f(x) = {1 \over 3}{x^3} - {1 \over 2}{x^2} - 4x + 6\)

LG a

a) Giải phương trình \(\displaystyle f’(sin x) = 0\)

Phương pháp giải:

+) Tính đạo hàm \(f'(x)\) và \(f''(x).\)

+) Thay \(\sin x\) vào giải phương trình \(f'(\sin x) =0\).

Lời giải chi tiết:

\(\displaystyle f(x) = {1 \over 3}{x^3} - {1 \over 2}{x^2} - 4x + 6\)

\(\displaystyle \Rightarrow f’(x) = x^2– x – 4\)

\(\displaystyle \Rightarrow  f’’(x) = 2x – 1\)

a) Ta có:

\(\displaystyle \eqalign{
& f'(s{\rm{inx}}) = 0 \Leftrightarrow {\sin ^2}x - {\mathop{\rm s}\nolimits} {\rm{in x}} - 4 = 0 \cr 
& \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{in x = }}{{1 \pm \sqrt {17} } \over 2}(1) \cr 
& Do{{1 - \sqrt {17} } \over 2} < - 1,{{1 + \sqrt {17} } \over 2} > 1 \cr} \)

Suy ra (1) vô nghiệm.

Cách 2: Đặt \(t=sinx\),\( - 1 \le t \le 1\)

Ta có:

\(\displaystyle \eqalign{
& f'(t) = 0 \Leftrightarrow t^2 - t - 4 = 0 \cr 
& \Leftrightarrow t= {{1 \pm \sqrt {17} } \over 2}(1) \cr 
& Do{{1 - \sqrt {17} } \over 2} < - 1,{{1 + \sqrt {17} } \over 2} > 1 \cr} \)

Suy ra \(\displaystyle f’(sin x) = 0\) vô nghiệm.

LG b

b) Giải phương trình \(\displaystyle f’’(cos x) = 0\)

Phương pháp giải:

Thay \(\cos x\) vào giải phương trình \(f''(\cos x) =0\).

Lời giải chi tiết:

Ta có: 

\(\displaystyle \eqalign{
& f''(cosx) = 0 \Leftrightarrow 2cosx - 1 = 0 \cr 
& \Leftrightarrow \cos x = {1 \over 2} = \cos {\pi \over 3} \cr 
& \Leftrightarrow x = \pm {\pi \over 3} + k2\pi ,k \in\mathbb Z \cr} \)

LG c

c) Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là nghiệm của phương trình \(\displaystyle f’’(x) = 0\).

Phương pháp giải:

Giải phương trình \(f''(x)=0\) để tìm nghiệm \(x_0.\)

+) Lập phương trình tiếp tuyến của đồ thị hàm số theo công thức: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + y\left( {{x_0}} \right).\)

Lời giải chi tiết:

\(f''\left( x \right) = 0 \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}\)

Ta có:

\(\displaystyle \eqalign{
& f'({1 \over 2}) = {1 \over 4} - {1 \over 2} - 4 = {{ - 17} \over 4} \cr 
&  f({1 \over 2}) = {1 \over 3}.{1 \over 8} - {1 \over 2}.{1 \over 4} - 4.{1 \over 2} + 6 = {{47} \over {12}} \cr} \)

Phương trình tiếp tuyến cần tìm có dạng:

\(\displaystyle y = {{ - 17} \over 4}(x - {1 \over 2}) + {{47} \over {12}} \) \(\displaystyle  \Leftrightarrow y =  - {{17} \over 4}x + {{145} \over {24}}\).

Loigiaihay.com


Bình chọn:
3.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.