Các dạng toán về tiếp tuyến, sự tiếp xúc của hai đường cong>
Các dạng toán về tiếp tuyến, sự tiếp xúc của hai đường cong
1. Tiếp tuyến với đồ thị hàm số
Dạng 1: Viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right) \in \left( C \right)\).
Phương pháp:
- Bước 1: Tính \(y' = f'\left( x \right) \Rightarrow f'\left( {{x_0}} \right)\).
- Bước 2: Viết phương trình tiếp tuyến \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
- Bước 3: Kết luận.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) biết tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right)\).
Phương pháp:
- Bước 1: Tính \(y' = f'\left( x \right)\).
- Bước 2: Viết phương trình tiếp tuyến tại điểm có hoành độ \({x_0}\) của \(\left( C \right)\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
- Bước 3: Thay tọa độ \(\left( {{x_M};{y_M}} \right)\) vào phương trình trên, giải phương trình tìm \({x_0}\).
- Bước 4: Thay mỗi giá trị \({x_0}\) tìm được vào phương trình tiếp tuyến ta được phương trình cần tìm.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc \(k\).
Phương pháp:
- Bước 1: Tính \(y' = f'\left( x \right)\).
- Bước 2: Giải phương trình \(f'\left( x \right) = k\) tìm nghiệm \({x_1},{x_2},...\).
- Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại các điểm \(\left( {{x_1};f\left( {{x_1}} \right)} \right),\left( {{x_2};f\left( {{x_2}} \right)} \right),...\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc nhỏ nhất, lớn nhất.
Phương pháp:
- Bước 1: Tính \(y' = f'\left( x \right)\).
- Bước 2: Tìm GTNN (hoặc GTLN) của \(f'\left( x \right)\) suy ra hệ số góc của tiếp tuyến và hoành độ tiếp điểm (là giá trị mà \(f'\left( x \right)\) đạt GTNN, GTLN).
- Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm vừa tìm được.
a) Tiếp tuyến tại các điểm cực trị của đồ thị \(\left( C \right)\) có phương song song hoặc trùng với trục hoành.
b) Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\left( {a \ne 0} \right)\).
+) Khi \(a > 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc nhỏ nhất.
+) Khi \(a < 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc lớn nhất.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\).
Phương pháp:
- Bước 1: Tính \(y' = f'\left( x \right)\).
- Bước 2: Nêu điều kiện về mối quan hệ giữa tiếp tuyến có hệ số góc \(k = f'\left( x \right)\) với đường thẳng \(d\) có hệ số góc \(k'\).
+ Tiếp tuyến vuông góc \(d \Leftrightarrow k.k' = - 1\).
+ Tiếp tuyến song song với \(d \Leftrightarrow k = k'\).
+ Góc tạo bởi tiếp tuyến của \((C)\) với \(d\) bằng \(\alpha \Leftrightarrow \tan \alpha = \left| {\dfrac{{{k} - {k'}}}{{1 + {k}{k'}}}} \right|\)
- Bước 3: Giải phương trình ở trên tìm nghiệm \({x_1},{x_2},...\) và tọa độ các tiếp điểm.
- Bước 4: Viết phương trình các tiếp tuyến tại các tiếp điểm vừa tìm được.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Tìm \(m\) để tiếp tuyến với \(\left( C \right)\) đi qua điểm \(M\left( {{x_M};{y_M}} \right)\) cho trước.
Phương pháp:
- Bước 1: Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \({x_0}\) thuộc \(\left( C \right)\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
- Bước 2: Nêu điều kiện để tiếp tuyến thỏa mãn điều kiện đề bài:
Tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right) \Leftrightarrow pt{\rm{ }}{y_M} = f'\left( {{x_0}} \right)\left( {{x_M} - {x_0}} \right) + f\left( {{x_0}} \right)\) có nghiệm.
- Bước 3: Tìm điều kiện của \(m\) dựa vào điều kiện ở trên và kết luận.
2. Sự tiếp xúc của các đồ thị hàm số
Cho \(\left( C \right):y = f\left( x \right)\) và \(\left( {C'} \right):y = g\left( x \right)\).
Phương pháp:
- Bước 1: Tính \(f'\left( x \right),g'\left( x \right)\).
- Bước 2: Giải hệ phương trình \(\left\{ \begin{array}{l}f'\left( x \right) = g'\left( x \right)\\f\left( x \right) = g\left( x \right)\end{array} \right.\).
- Bước 3: Kết luận:
+ Nếu hệ có nghiệm thì \(\left( C \right)\) và \(\left( {C'} \right)\) tiếp xúc.
+ Nếu hệ vô nghiệm thì \(\left( C \right)\) và \(\left( {C'} \right)\) không tiếp xúc.
Phương pháp:
- Bước 1: Tính \(f'\left( x \right),g'\left( x \right)\).
- Bước 2: Nêu điều kiện để hai đồ thị hàm số tiếp xúc:
\(\left( C \right)\) và \(\left( {C'} \right)\) tiếp xúc nếu và chỉ nếu hệ phương trình \(\left\{ \begin{array}{l}f'\left( x \right) = g'\left( x \right)\\f\left( x \right) = g\left( x \right)\end{array} \right.\) có nghiệm.
- Bước 3: Tìm \(m\) từ điều kiện trên và kết luận.
- Tổng hợp lí thuyết chương 1
- Các dạng toán về tương giao đồ thị
- Các dạng toán về hàm phân thức có tham số
- Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
- Giải bài 5 trang 47 SGK Giải tích 12
>> Xem thêm