Bài 3 trang 47 SGK Giải tích 12


Giải bài 3 trang 47 SGK Giải tích 12. Số đường tiệm cận của đồ thị hàm số là:

Đề bài

Số đường tiệm cận của đồ thị hàm số \(\displaystyle y = {{1 - x} \over {1 + x}}\) là

A. \(\displaystyle 1\)            B. 2              C. \(\displaystyle 3\)             D. \(\displaystyle 0\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Đường thẳng \(y=y_0\) là đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau thỏa mãn: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0};\,\,\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\).

- Đường thẳng \(x=x_0\) là đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \\\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty ;\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \end{array}\)

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  - {1^ - }} y =  + \infty ,\mathop {\lim }\limits_{x \to  - {1^ + }} y =  - \infty \).

\(\Rightarrow \)  \(x = -1\) là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to  \pm \infty } y \) \( = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - x}}{{1 + x}} \) \(= \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{\frac{1}{x} - 1}}{{\frac{1}{x} + 1}}=-1\)

\(\Rightarrow\)  \(y = - 1\) là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị có 2 tiệm cận.

Chọn đáp án B

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài