Bài 6 trang 45 SGK Giải tích 12


Giải bài 6 trang 45 SGK Giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số \((C)\) của hàm số \(f(x)  = - {x^3} + 3{x^2} + 9x + 2.\)

Phương pháp giải:

Khảo sát và vẽ đồ thị hàm số qua các bước đã học.

Lời giải chi tiết:

Tập xác định: \(D =\mathbb R\)

* Sự biến thiên:  

Ta có:\( y' = - 3{x^2} + 6x + 9.\)

\( \Rightarrow y'=0  \Leftrightarrow - 3{x^2} + 6x + 9 = 0   \)

\(\begin{array}{l}
\Leftrightarrow - 3\left( {x + 1} \right)\left( {x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
x - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 3
\end{array} \right..
\end{array}\)

- Hàm số đồng biến trên khoảng: \((-1;3)\), nghịch biến trên khoảng \((-\infty; -1)\) và \((3;+\infty)\)

- Cực trị:

    Hàm số đạt cực đại tại \(x=3\); \(y_{CĐ}=29\)

    Hàm số đạt cực tiểu tại \(x=-1\); \(y_{CT}=-3\)

- Giới hạn:

   \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty\)
   \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \)

-Bảng biến thiên:

* Đồ thị

Đồ thị hàm số giao trục \(Oy\) tại điểm \((0;2)\)

Đồ thị hàm số nhận \(I(1;13)\) làm tâm đối xứng.

LG b

b) Giải bất phương trình \(f’(x-1)>0.\)

Phương pháp giải:

Tính đạo hàm \(y=f'(x).\) Thay \(x-1\) vào vị trí của \(x\) để tính \(f'(x-1)\) và giải bất phương trình \(f'(x-1)>0.\)

Lời giải chi tiết:

\(y=f(x)  = - {x^3} + 3{x^2} + 9x + 2\)

\(f’(x) = - 3{x^2} + 6x + 9\). 

\( \Rightarrow f’(x-1)=-3(x-1)^2+6(x-1)+9\)

\( =  - 3\left( {{x^2} - 2x + 1} \right) + 6x - 6 + 9 \) \(=  - 3{x^2} + 6x - 3 + 6x + 3\)

= \(-3x^2+ 12x \)

\( \Rightarrow f'(x-1)> 0 \) \( \Leftrightarrow  - 3{x^2} + 12x > 0 \Leftrightarrow 0 < x < 4\)

LG c

c) Viết phương trình tiếp tuyến của đồ thị \((C)\) tại điểm có hoành độ \(x_0,\) biết rằng \(f’’(x_0) = -6.\)

Phương pháp giải:

Giải phương trình \(f''(x_0)=-6\) để tìm \(x_0.\) Sau đó viết phương trình tiếp tuyến của đồ thị hàm số \((C)\) theo công thức: \(y=y'(x_0)(x-x_0)+y(x_0).\)

Lời giải chi tiết:

Có \(f’’(x) = -6x+6\)

\(f’’(x_0)= -6 ⇔ -6x_0+ 6 = -6 \) \(⇔ x_0= 2\)

Do đó: \(f’(2) = 9, f(2) = 24\).

Phương trình tiếp tuyến của \((C)\) tại \(x_0= 2\) là:

\(y=f’(2)(x-2) + f(2)  \) \(⇔  y=9(x-2) +24 \) \(⇔y = 9x+6.\)

Loigiaihay.com


Bình chọn:
3.7 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài