Bài 6 trang 45 SGK Giải tích 12

Bình chọn:
3.7 trên 7 phiếu

Giải bài 6 trang 45 SGK Giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số

Đề bài

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số \((C)\) của hàm số \(f(x)  = - {x^3} + 3{x^2} + 9x + 2.\)

b) Giải bất phương trình \(f’(x-1)>0.\)

c) Viết phương trình tiếp tuyến của đồ thị \((C)\) tại điểm có hoành độ \(x_0,\) biết rằng \(f’’(x_0) = -6.\)

Phương pháp giải - Xem chi tiết

a) Khảo sát và vẽ đồ thị hàm số qua các bước đã học.

b) Tính đạo hàm \(y=f'(x).\) Thay \(x-1\) vào vị trí của \(x\) để tính \(f'(x-1)\) và giải bất phương trình \(f'(x-1)>0.\)

c) Giải phương trình \(f''(x_0)=-6\) để tìm \(x_0.\) Sau đó viết phương trình tiếp tuyến của đồ thị hàm số \((C)\) theo công thức: \(y=y'(x_0)(x-x_0)+y(x_0).\)

Lời giải chi tiết

a) Tập xác định: \(D =\mathbb R\)

* Sự biến thiên:  

Ta có:\( y' = - 3{x^2} + 6x + 9.\)

\( \Rightarrow y'=0  \Leftrightarrow - 3{x^2} + 6x + 9 = 0   \)

\(\begin{array}{l}
\Leftrightarrow - 3\left( {x + 1} \right)\left( {x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
x - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 3
\end{array} \right..
\end{array}\)

- Hàm số đồng biến trên khoảng: \((-1;3)\), nghịch biến trên khoảng \((-\infty; -1)\) và \((3;+\infty)\)

- Cực trị:

    Hàm số đạt cực đại tại \(x=3\); \(y_{CĐ}=29\)

    Hàm số đạt cực tiểu tại \(x=-1\); \(y_{CT}=-3\)

- Giới hạn:

   \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty\)
   \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \)

-Bảng biến thiên:

* Đồ thị

Đồ thị hàm số giao trục \(Oy\) tại điểm \((0;2)\)

Đồ thị hàm số nhận \(I(1;13)\) làm tâm đối xứng.

b) \(y=f(x) = f(x)  = - {x^3} + 3{x^2} + 9x + 2\)

\(f’(x) = - 3{x^2} + 6x + 9 = 0\). 

\( \Rightarrow f’(x-1)=-3(x-1)^2+6(x-1)+9\)

= \(-3x^2+ 12x = -3x(x-4) \)

\( \Rightarrow f'(x-1)> 0 ⇔  -3x(x-4) >0 \) \(⇔x(x-4)<0⇔0<x<4 \)

c) Có \(f’’(x) = -6x+6\)

\(f’’(x_0)= -6 ⇔ -6x_0+ 6 = -6 ⇔ x_0= 2\)

Do đó: \(f’(2) = 9, f(2) = 24\).

Phương trình tiếp tuyến của \((C)\) tại \(x_0= 2\) là:

\(y=f’(2)(x-2) + f(2)  ⇔  y=9(x-2) +24 \) \(⇔y = 9x+6.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.