

Giải bài 3 trang 45 SGK Giải tích 12>
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số :
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số:
\(\displaystyle y = {{2x + 3} \over {2 - x}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Cách tìm tiệm cận ngang:
Đường thẳng \(y=y_0\) là tiệm cận ngang của đồ thị hàm số \(y=f(x)\) nếu ít nhất một trong các điều kiện sau thỏa mãn
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } f(x) = {y_0} \cr
& \mathop {\lim }\limits_{x \to + \infty } f(x) = {y_0} \cr} \)
- Cách tìm tiệm cận đứng:
Đường thẳng \(x=x_0\) là tiệm cận đứng của đồ thị hàm số \(y=f(x)\) nếu ít nhất một trong các điều kiện sau thỏa mãn
\(\eqalign{
& \mathop {\lim }\limits_{x \to x_0^ + } f(x) = - \infty ,\mathop {\lim }\limits_{x \to x_0^ + } f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to x_0^ - } f(x) = - \infty ,\mathop {\lim }\limits_{x \to x_0^ - } f(x) = + \infty \cr} \)
Lời giải chi tiết
Ta có: \(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x + 3}}{{2 - x}} = + \infty ;\) \(\displaystyle \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 3}}{{2 - x}} = - \infty \)
\(\displaystyle \Rightarrow x=2\) là tiệm cận đứng của đồ thị hàm số.
\(\displaystyle \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2x + 3}}{{2 - x}}=\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2 + \frac{3}{x}}}{{\frac{2}{x} - 1}} = - 2 \) \(\Rightarrow y = - 2\) là tiệm cận ngang của đồ thị hàm số.
Loigiaihay.com


- Giải bài 4 trang 45 SGK Giải tích 12
- Giải bài 5 trang 45 SGK Giải tích 12
- Giải bài 6 trang 45 SGK Giải tích 12
- Giải bài 7 trang 46 SGK Giải tích 12
- Giải bài 8 trang 46 SGK Giải tích 12
>> Xem thêm