Giải SBT toán hình học và giải tích 12 nâng cao
Bài 2. Căn bậc hai của số phức, phương trình bậc hai
Câu 4.23 trang 180 sách bài tập Giải tích 12 Nâng cao>
a) Chứng minh rằng nếu ba số phức
LG a
Chứng minh rằng nếu ba số phức \({z_1},{z_2},{z_3}\) thỏa mãn
\(\left\{ \matrix{\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1} + {z_2} + {z_3} = 1 \hfill \cr} \right.\)
Thì một trong ba số đó phải bằng 1
Giải chi tiết:
Viết \(1 - {z_1} = {z_2} + {z_3}\)
Nếu \({z_1} = 1\) thì \({z_2} + {z_3} = 0\)
Nếu \({z_1} \ne 1\) thì \(1 - {z_1} \ne 0\), điểm P biểu diễn số \(1 + \left( { - {z_1}} \right) = {z_2} + {z_3}\) không trùng với O nên do \(1 = \left| { - {z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\), đường trung trực OP cắt đường tròn đơn vị tại hai điểm biểu diễn \(1, - {z_1}\) và cũng là hai điểm biểu diễn \({z_2},{z_3}\) (h.4.7). Vậy \({z_2} = 1,{z_3} = - {z_1}\) hoặc \({z_2} = - {z_1},{z_3} = 1\). Tóm lại hoặc \({z_1} = 1\) hoặc \({z_2} = 1\) hoặc \({z_3} = 1\) và tổng hai số z còn lại bằng 0
LG b
Giải hệ phương trình ba ẩn phức \({z_1},{z_2},{z_3}\) sau:
\(\left\{ \matrix{ \left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1}{z_2} + {z_3} = 1 \hfill \cr{z_1}{z_2}{z_3} = 1 \hfill \cr} \right.\)
Giải chi tiết:
Từ hai phương trình đầu của hệ, theo câu a) có thể coi \({z_1} = 1,{z_2} + {z_3} = 0\). Khi đó điều kiện \(z_1z_2z_3=1\) kéo theo hoặc \({z_2} = i,{z_3} = - i\) hoặc \({z_2} = - i,{z_3} = i.\). Suy ra hệ có 6 nghiệm do đổi chỗ các phần tử của bộ ba \(\left( {1,i, - i} \right)\)

Loigiaihay.com
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao




