Câu 4.22 trang 180 sách bài tập Giải tích 12 Nâng cao


Cho phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình

\({z^3} - 2\left( {1 + i} \right){z^2} + 3iz + 1 - i = 0\)

LG a

Do đâu có thể nhận thấy nhanh chóng rằng z = 1 là một nghiệm của phương trình đó ?

Giải chi tiết:

Tổng các hệ số vế trái phương trình bằng 0

LG b

Tìm các số phức \(\alpha ,\beta \) để có phân tích

\({z^3} - 2\left( {1 + i} \right){z^2} + 3iz + 1 - i = \left( {z - 1} \right)\left( {{z^2} + \alpha z + \beta } \right)\)

Rồi giải phương trình đã cho.

Giải chi tiết:

\(\alpha  =  - 1 - 2i,\beta  =  - 1 + i.\). Phương trình có ba nghệm \(1,1 + i,i.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài