Câu 4.22 trang 180 sách bài tập Giải tích 12 Nâng cao>
Cho phương trình
Cho phương trình
\({z^3} - 2\left( {1 + i} \right){z^2} + 3iz + 1 - i = 0\)
LG a
Do đâu có thể nhận thấy nhanh chóng rằng z = 1 là một nghiệm của phương trình đó ?
Giải chi tiết:
Tổng các hệ số vế trái phương trình bằng 0
LG b
Tìm các số phức \(\alpha ,\beta \) để có phân tích
\({z^3} - 2\left( {1 + i} \right){z^2} + 3iz + 1 - i = \left( {z - 1} \right)\left( {{z^2} + \alpha z + \beta } \right)\)
Rồi giải phương trình đã cho.
Giải chi tiết:
\(\alpha = - 1 - 2i,\beta = - 1 + i.\). Phương trình có ba nghệm \(1,1 + i,i.\)
Loigiaihay.com
- Câu 4.23 trang 180 sách bài tập Giải tích 12 Nâng cao
- Câu 4.21 trang 180 sách bài tập Giải tích 12 Nâng cao
- Câu 4.20 trang 180 sách bài tập Giải tích 12 Nâng cao
- Câu 4.19 trang 179 sách bài tập Giải tích 12 Nâng cao
- Câu 4.18 trang 179 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao