Giải SBT toán hình học và giải tích 12 nâng cao
Bài 2. Căn bậc hai của số phức, phương trình bậc hai
Câu 4.19 trang 179 sách bài tập Giải tích 12 Nâng cao>
Rồi giải phương trình sau trên C
Rồi giải phương trình sau trên C
LG a
\({z^4} - {z^3} + {{{z^2}} \over 2} + z + 1 = 0\) bằng cách đặt ẩn phụ \({\rm{w}} = z - {1 \over z}\)
Giải chi tiết:
\({z^4} - {z^3} + {{{z^2}} \over 2} + z + 1 = {z^2}\left[ {{{\left( {z - {1 \over z}} \right)}^2} - \left( {z - {1 \over z}} \right) + {5 \over 2}} \right]\)
Phương trình \({{\rm{w}}^2} - {\rm{w}} + {5 \over 2} = 0\) có hai nghiệm là \({{1 + 3i} \over 2}\) và \({{1 - 3i} \over 2}\)
Vậy \(1 + i,{{ - 1 + i} \over 2},1 - i, - {{ - 1 + i} \over 2}\)
LG b
\({\left( {{z^2} + 3z + 6} \right)^2} + 2z\left( {{z^2} + 3z + 6} \right) - 3{z^2} = 0\)
Giải chi tiết:
\({\left( {{z^2} + 3z + 6} \right)^2} + 2z\left( {{z^2} + 3z + 6} \right) = {\left( {{z^2} + 3z + 6} \right)^2} - {z^2}\)
Vậy \( - 3 \pm \sqrt 3 , - 1 \pm \sqrt 5 i\)
Loigiaihay.com
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao




