

Câu 3.72 trang 154 sách bài tập Giải tích 12 Nâng cao>
Tính thể tích khối tròn xoay tạo thành khi quay quanh trục tung mỗi hình phẳng giới hạn bởi các đường sau:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Tính thể tích khối tròn xoay tạo thành khi quay quanh trục tung mỗi hình phẳng giới hạn bởi các đường sau:
LG a
\(x = {{\sqrt {2y} } \over {{y^2} + 1}},y = 0,y = 1\)
Giải chi tiết:
\(V = \pi \int\limits_0^1 {{{2y} \over {{{\left( {{y^2} + 1} \right)}^2}}}dy = } {\pi \over 2}\)
LG b
\(x = 2x - {x^2},y = 0,x = 2\)
Giải chi tiết:
Ta có \(x = 1 + \sqrt {1 - y} \) hoặc \(x = 1 - \sqrt {1 - y} \). Vậy
\(V = \pi \int\limits_0^1 {{{\left( {1 + \sqrt {1 - y} } \right)}^2}} dy - \pi \int\limits_0^1 {{{\left( {1 - \sqrt {1 - y} } \right)}^2}} dy \)
\(= 4\pi \int\limits_0^1 {\sqrt {1 - y} dy = {{8\pi } \over 3}} \)
LG c
Hình tròn có tâm \(I\left( {2;0} \right)\), bán kính = 1
Giải chi tiết:
Ta có \(x = 2 + \sqrt {1 - {y^2}} \) hoặc \(x = 2 - \sqrt {1 - {y^2}} \). Vậy
\(V = \pi \int\limits_0^1 {{{\left( {2 + \sqrt {1 - {y^2}} } \right)}^2}} dy\)
\(- \pi \int\limits_0^1 {{{\left( {2 - \sqrt {1 - {y^2}} } \right)}^2}} dy \)
\(= 16\pi \int\limits_0^1 {\sqrt {1 - {y^2}} dy = 4{\pi ^2}} \)
Để tính tích phân trên ta đổi biến \(y = \sin t\)
Loigiaihay.com


- Câu 3.73 trang 154 sách bài tập Giải tích 12 Nâng cao
- Câu 3.71 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.70 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.69 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.68 trang 153 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao