Câu 3.64 trang 152 sách bài tập Giải tích 12 Nâng cao


Tìm nguyên hàm của các hàm số sau bằng phương pháp lấy nguyên hàm từng phần:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nguyên hàm của các hàm số sau bằng phương pháp lấy nguyên hàm từng phần:

LG a

\(y = {x^2}{\rm{cos}}x\)

Giải chi tiết:

\({x^2}\sin x - 2\sin x + 2x\cos x + C\)

Hướng dẫn: Đặt \(u = {x^2},v' = c{\rm{os}}x\)

LG b

\(y = {x^2}{e^x}\)

Giải chi tiết:

\({e^x}\left( {{x^2} - 2x + 2} \right) + C\)

Hướng dẫn: Đặt \(u = {x^2},v' = {e^x}\)

LG c

\(y = {x^3}{e^x}\)

Giải chi tiết:

\({e^x}\left( {{x^3} - 3{x^2} + 6x - 6} \right) + C\)                      

Hướng dẫn: Đặt \(u = {x^3},v' = {e^x}\)

LG d

\(y = {e^{ - x}}{\rm{cos}}x\)

Giải chi tiết:

\({1 \over 2}{e^{ - x}}\left( {\sin x - c{\rm{os}}x} \right) + C\)

Hướng dẫn: Đặt \(u = c{\rm{os}}x,v' = {e^{ - x}}\). Khi xuất hiện \(\int {{e^{ - x}}\sin xdx} \)  lại tiếp tục sử dụng phương pháp tích phân từng phần đối với \(u = \sin x,v' = {e^{ - x}}\)

LG e

\(y = {e^{2x}}{\rm{cos3}}x\)

Giải chi tiết:

\({{{e^{2x}}} \over {13}}\left( {3\sin 3x + 2c{\rm{os3}}x} \right) + C\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài