Câu 3.65 trang 152 sách bài tập Giải tích 12 Nâng cao


Bằng cách phối hợp hai phương pháp biến đổi số và lấy nguyên hàm từng phần, tìm

Lựa chọn câu để xem lời giải nhanh hơn

Bằng cách phối hợp hai phương pháp biến đổi số và lấy nguyên hàm từng phần, tìm

LG a

\(\int {{e^{\sqrt {7x + 4} }}dx} \)

Giải chi tiết:

\({2 \over 7}{e^{\sqrt {7x + 4} }}\sqrt {7x + 4}  - {2 \over 7}{e^{\sqrt {7x + 4} }} + C\)                         Hướng dẫn: Đặt . Suy ra \(dx = {2 \over 7}udu\)

LG b

\(\int {\ln {{\left( {x + x} \right)}^2}dx} \)

Giải chi tiết:

\(x\ln \left( {x + {x^2}} \right) - 2x + \ln \left( {x + 1} \right) + C\)

Hướng dẫn: Đặt \(u = \ln \left( {x + {x^2}} \right),v' = 1\)

LG c

\(\int {x{{\tan }^2}xdx} \)

Giải chi tiết:

\({1 \over 2}{x^2} + x\tan x + \ln \left| {{\rm{cos}}x} \right| + C\)                      

Hướng dẫn: Chú ý rằng \({\tan ^2}x = {1 \over {{\rm{co}}{{\rm{s}}^2}x}} - 1\), ta đưa về \(\int {{{xdx} \over {{\rm{co}}{{\rm{s}}^2}x}}} \) rồi sử dụng phương pháp tích phân từng phần với \(u = x,v' = {1 \over {{\rm{co}}{{\rm{s}}^2}x}}\)

LG d

\(\int {\sin \left( {\ln x} \right)dx} \)

Giải chi tiết:

\({{x\sin \left( {\ln x - x\cos \left( {\ln x} \right)} \right)} \over 2} + C\)

Hướng dẫn: Đặt \(u = \ln x.\) Suy ra \(dx = {e^u}du\)  

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài