

Câu 3.65 trang 152 sách bài tập Giải tích 12 Nâng cao>
Bằng cách phối hợp hai phương pháp biến đổi số và lấy nguyên hàm từng phần, tìm
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Bằng cách phối hợp hai phương pháp biến đổi số và lấy nguyên hàm từng phần, tìm
LG a
\(\int {{e^{\sqrt {7x + 4} }}dx} \)
Giải chi tiết:
\({2 \over 7}{e^{\sqrt {7x + 4} }}\sqrt {7x + 4} - {2 \over 7}{e^{\sqrt {7x + 4} }} + C\) Hướng dẫn: Đặt . Suy ra \(dx = {2 \over 7}udu\)
LG b
\(\int {\ln {{\left( {x + x} \right)}^2}dx} \)
Giải chi tiết:
\(x\ln \left( {x + {x^2}} \right) - 2x + \ln \left( {x + 1} \right) + C\)
Hướng dẫn: Đặt \(u = \ln \left( {x + {x^2}} \right),v' = 1\)
LG c
\(\int {x{{\tan }^2}xdx} \)
Giải chi tiết:
\({1 \over 2}{x^2} + x\tan x + \ln \left| {{\rm{cos}}x} \right| + C\)
Hướng dẫn: Chú ý rằng \({\tan ^2}x = {1 \over {{\rm{co}}{{\rm{s}}^2}x}} - 1\), ta đưa về \(\int {{{xdx} \over {{\rm{co}}{{\rm{s}}^2}x}}} \) rồi sử dụng phương pháp tích phân từng phần với \(u = x,v' = {1 \over {{\rm{co}}{{\rm{s}}^2}x}}\)
LG d
\(\int {\sin \left( {\ln x} \right)dx} \)
Giải chi tiết:
\({{x\sin \left( {\ln x - x\cos \left( {\ln x} \right)} \right)} \over 2} + C\)
Hướng dẫn: Đặt \(u = \ln x.\) Suy ra \(dx = {e^u}du\)
Loigiaihay.com


- Câu 3.66 trang 152 sách bài tập Giải tích 12 Nâng cao
- Câu 3.67 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.68 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.69 trang 153 sách bài tập Giải tích 12 Nâng cao
- Câu 3.70 trang 153 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao