Bài 1.60 trang 22 SBT Giải tích 12 Nâng cao


Giải bài 1.60 trang 22 sách bài tập Giải tích 12 Nâng cao. Tìm giao điểm của đồ thị (C) của hàm số ...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm giao điểm của đồ thị (C) của hàm số \(y = {x^3} + 3{x^2} - 3x - 2\) và parabol \(y = {x^2} - 4x + 2\)

Lời giải chi tiết:

Phương trình hoành độ giao điểm:

\(\begin{array}{l}{x^3} + 3{x^2} - 3x - 2 = {x^2} - 4x + 2\\ \Leftrightarrow {x^3} + 2{x^2} + x - 4 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + 3x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\{x^2} + 3x + 4 = 0\,\,\left( {VN} \right)\end{array} \right.\\ \Leftrightarrow x = 1 \Rightarrow y =  - 1\end{array}\)

Vậy giao điểm \(\left( {1; - 1} \right)\).

LG b

Xét vị trí tương đối của đường cong (C) và parabol (tức là xác định mỗi khoảng trên đó (C) nằm phía trên hoặc phía dưới parabol)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{x^3} + 3{x^2} - 3x - 2 > {x^2} - 4x + 2\\ \Leftrightarrow {x^3} + 2{x^2} + x - 4 > 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + 3x + 4} \right) > 0\\ \Leftrightarrow x > 1\end{array}\)

Do đó,

+) trên khoảng \(\left( { - \infty ;1} \right)\) thì (C) nằm dưới parabol

+) trên khoảng \(\left( {1; + \infty } \right)\) thì (C) nằm phía trên parabol.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài