Bài 1.59 trang 22 SBT Giải tích 12 Nâng cao


Giải bài 1.59 trang 22 sách bài tập Giải tích 12 Nâng cao. Cho hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số

\(y = {x^3} - 2m(x + 1) + 1\)

LG a

Với các giá trị nào của m, đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt

Lời giải chi tiết:

Hoành độ giao điểm của đồ thị hàm số đã cho và trục hoành là nghiệm của phương trình

\(\eqalign{& {x^3} + 1 - 2m(x + 1) = 0  \cr& \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - 2m\left( {x + 1} \right) = 0\cr&  \Leftrightarrow (x + 1)({x^2} - x + 1 - 2m) = 0 \cr} \)

\( \Leftrightarrow \left[ \matrix{x =  - 1 \hfill \cr f(x) = {x^2} - x + 1 - 2m = 0(1) \hfill \cr}  \right.\)

Đồ thị của hàm số đã cho cắt trục hoành tại ba điểm phân biệt khi và chỉ khi khi phương trình (1) có hai nghiệm phân biệt khác -1, tức là

\(\left\{ \matrix{\Delta  > 0 \hfill \cr f( - 1) \ne 0 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{8m - 3 > 0 \hfill \cr3 - 2m \ne 0 \hfill \cr}  \right. \)

\(\Leftrightarrow m > {3 \over 8}\) và \(m \ne {3 \over 2}\).

LG b

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.

Lời giải chi tiết:

Với \(m = 2\) ta có:

\(y = {x^3} - 4\left( {x + 1} \right) + 1\) \( = {x^3} - 4x - 3\)

+) TXĐ: \(D = \mathbb{R}\)

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \)

\(\begin{array}{l}y' = 3{x^2} - 4\\y' = 0 \Leftrightarrow 3{x^2} - 4 = 0\\ \Leftrightarrow {x^2} = \frac{4}{3} \Leftrightarrow x =  \pm \frac{2}{{\sqrt 3 }}\\y\left( {\frac{2}{{\sqrt 3 }}} \right) = \frac{{ - 27 - 16\sqrt 3 }}{9}\\y\left( { - \frac{2}{{\sqrt 3 }}} \right) = \frac{{ - 27 + 16\sqrt 3 }}{9}\end{array}\)

BBT:

+) Đồ thị:

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài