Bài 1.50 trang 20 SBT Giải tích 12 Nâng cao


Giải bài 1.50 trang 20 sách bài tập Giải tích 12 Nâng cao. Khảo sát sự biến thiên và vẽ đồ thị của hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số

\(y = {x^4} - 2{x^2} + 3\)

Lời giải chi tiết:

+) TXĐ: \(D = \mathbb{R}\).

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \)

\(\begin{array}{l}y' = 4{x^3} - 4x\\y' = 0 \Leftrightarrow 4{x^3} - 4x = 0\\ \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\end{array} \right.\end{array}\)

BBT:

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).

Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số đạt cực đại tại \(x =  \pm 1,{y_{CD}} = 2\)

Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 3\).

+) Đồ thị:

Trục đối xứng: \(Oy\).

Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;3} \right)\).

Điểm cực đại \(\left( {0;3} \right)\) và điểm cực tiểu \(\left( { - 1;2} \right),\left( {1;2} \right)\).

LG b

Viết phương trình tiếp tuyến của đồ thị tại mỗi điểm uốn của nó

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}y'' = 12{x^2} - 4\\y'' = 0 \Leftrightarrow 12{x^2} - 4 = 0\\ \Leftrightarrow {x^2} = \frac{1}{3} \Leftrightarrow x =  \pm \frac{1}{{\sqrt 3 }}\\ \Rightarrow y\left( { \pm \frac{1}{{\sqrt 3 }}} \right) = \frac{{22}}{9}\end{array}\)

Với \({U_1}\left( {\frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right)\) ta có \(y'\left( {\frac{1}{{\sqrt 3 }}} \right) =  - \frac{{8\sqrt 3 }}{9}\) nên phương trình tiếp tuyến là:

\(y =  - \frac{{8\sqrt 3 }}{9}\left( {x - \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9}\) hay \(y =  - \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}\).

Với \({U_2}\left( { - \frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right)\) ta có \(y'\left( { - \frac{1}{{\sqrt 3 }}} \right) = \frac{{8\sqrt 3 }}{9}\) nên phương trình tiếp tuyến là:

\(y = \frac{{8\sqrt 3 }}{9}\left( {x + \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9}\) hay \(y = \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài