Bài 1.30 trang 16 SBT Giải tích 12 Nâng cao


Giải bài 1.30 trang 16 sách bài tập Giải tích 12 Nâng cao. Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng AB = 5km...

Đề bài

Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng AB = 5km. Trên bờ biền có một cái kho ở vị trí C cách B một khoảng là 7km. Người canh hải đăng có thể chèo đò từ A đến điểm M trên bờ biển với vận tốc 4 km/h rồi đi bộ đến C với vận tốc 6km/h (h.1.5).

Xác định vị trí của điểm M để người đó đến kho nhanh nhất.

Lời giải chi tiết

Đặt \(x = BM,0 \le x \le 7\).

Khi đó, \(AM = \sqrt {{x^2} + 25} ,MC = 7 - x.\) 

Thời gian người canh hải đăng đi từ A đến C là

\(T(x) = {{\sqrt {{x^2} + 25} } \over 4} + {{7 - x} \over 6}\) (giờ) \(0 \le x \le 7\)

Ta tìm \(x\in [0;7]\) để T đạt GTNN như sau:

\(\begin{array}{l}
T'\left( x \right) = \frac{1}{4}.\frac{x}{{\sqrt {{x^2} + 25} }} - \frac{1}{6}\\
T'\left( x \right) = 0 \Leftrightarrow \frac{1}{4}.\frac{x}{{\sqrt {{x^2} + 25} }} - \frac{1}{6} = 0\\
\Leftrightarrow \frac{1}{4}.\frac{x}{{\sqrt {{x^2} + 25} }} = \frac{1}{6}\\
\Leftrightarrow 3x = 2\sqrt {{x^2} + 25} \\
\Leftrightarrow 9{x^2} = 4{x^2} + 100\\
\Leftrightarrow {x^2} = 20 \Leftrightarrow \left[ \begin{array}{l}
x = 2\sqrt 5 \in \left[ {0;7} \right]\\
x = - 2\sqrt 5 \notin \left[ {0;7} \right]
\end{array} \right.
\end{array}\)

Hàm số T đạt giá trị nhỏ nhất tại điểm \(x = 2\sqrt 5  \approx 4,472(km)\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí