Bài 1.26 trang 14 SBT Giải tích 12 Nâng cao


Giải bài 1.26 trang 14 sách bài tập Giải tích 12 Nâng cao. Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình 1.3) từ một mảnh các tông hình tròn bán kính R

Lựa chọn câu để xem lời giải nhanh hơn

Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình 1.3) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của một hình quạt còn lại với nhau để được một cái phễu có dạng một hình nón. Gọi x là góc ở tâm của hình quạt tròn dùng làm phễu (h.1.3), \(0 < x < 2\pi \)

LG a

Hãy biểu diễn hán kính r của hình tròn đáy và đường cao h của hình nón theo R và x.

Lời giải chi tiết:

Vì độ dài của đường tròn đáy hình nón bằng độ dài \(\overparen{AB}\) của quạt tròn dùng làm phễu, nên ta có \(2\pi r = Rx\)

Do đó \(r = {{Rx} \over {2\pi }}\)

và \(h = \sqrt {{R^2} - {r^2}}  = \sqrt {{R^2} - {{{R^2}{x^2}} \over {4{\pi ^2}}}}  \)\(= {R \over {2\pi }}\sqrt {4{\pi ^2} - {x^2}} \)

LG b

Tính thể tích hình nón theo R và x.

Lời giải chi tiết:

Thể tích hình nón là

\(V = {1 \over 3}\pi {r^2}h = {{{R^3}} \over {24{\pi ^2}}}{x^2}\sqrt {4{\pi ^2} - {x^2}} ,\)\(0 < x < 2\pi \)

LG c

Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.

Lời giải chi tiết:

Ta tìm \(x \in \left( {0;2\pi } \right)\) sao cho tại đó V đạt giá trị lớn nhất

\(V' = {{{R^3}} \over {24{\pi ^2}}}.{{x\left( {8{\pi ^2} - 3{x^2}} \right)} \over {\sqrt {4{\pi ^2} - {x^2}} }}\)

Với \(0 < x < 2\pi \), ta có

\(V' = 0 \Leftrightarrow 8{\pi ^2} - 3{x^2} = 0 \)

\(\Leftrightarrow x = {{2\sqrt 6 } \over 3}\pi \approx 1,63\pi \)

Hình nón có thể tích lớn nhất khi \(x = {{2\sqrt 6\pi } \over 3} \approx 1,63\pi \)

\(\mathop {\max }\limits_{x \in \left( {0;2\pi } \right)} V = V({{2\sqrt 6 \pi} \over 3}) = {{2\sqrt 3 } \over {27}}\pi {R^3}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.