 Giải SBT toán hình học và giải tích 12 nâng cao
                                                
                            Giải SBT toán hình học và giải tích 12 nâng cao
                         Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của ..
                                                        Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của ..
                                                    Bài 6 trang 6 SBT Hình học 12 Nâng cao>
Giải bài 6 trang 6 sách bài tập Hình học 12 Nâng cao. Cho hình tứ diện đều ABCD...
Đề bài
Cho hình tứ diện đều ABCD. Chứng minh rằng mặt phẳng trung trực của AB và mặt phẳng trung trực của CD chia tứ diện ABCD thành bốn tứ diện bằng nhau.
Lời giải chi tiết
Gọi I là trung điểm của AB thì \(mp\left( {ICD} \right)\) là mặt phẳng trung trực của AB nên mặt phẳng đó chia tứ diện đều ABCD thành hai tứ diện bằng nhau : tứ diện AICD và tứ diện BICD.
Gọi J là trung điểm CD thì \(mp\left( {JAB} \right)\) là mặt phẳng đối xứng của tứ diện AICD nên nó chia tứ diện đó thành hai tứ diện bằng nhau : tứ diện CAIJ và tứ diện DAIJ.
Hiển nhiên \(\left( {JAB} \right)\) cũng là mặt phẳng đối xứng của tứ diện BICD nên nó chia tứ diện đó thành hai tứ diện bằng nhau : tứ diện CBIJ và tứ diện DBIJ.
Chú ý rằng phép đối xứng qua đường thẳng IJ biến tứ diện CAIJ thành tứ diện DBIJ nên hai tứ diện đó bằng nhau.
Tóm lại ta có bốn hình tứ diện bằng nhau: CAIJ, DAIJ, CBIJ, DBIJ.

Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            