Bài 49 trang 46 SBT Hình học 10 Nâng cao


Giải bài tập Bài 49 trang 46 SBT Hình học 10 Nâng cao

Đề bài

Cho bốn điểm \(A(-8 ; 0), B(0 ; 4),\)\( C(2 ; 0), D(-3 ; -5)\).Chứng minh rằng tứ giác \(ABCD\) nội tiếp được trong một đường tròn.

Lời giải chi tiết

\(\begin{array}{l}\overrightarrow {AB}  = (8 ; 4) ;  \overrightarrow {AD}  = (5 ;  - 5) ;\\  \overrightarrow {CB}  = ( - 2 ; 4) ;  \overrightarrow {CD}  = ( - 5 ;  - 5).\\\cos \left( {\overrightarrow {AB} , \overrightarrow {AD} } \right)\\ = \dfrac{{8.5 + 4.( - 5)}}{{\sqrt {{8^2} + {4^2}} .\sqrt {{5^2} + {5^2}} }} = \dfrac{1}{{\sqrt {10} }} ,\\\cos \left( {\overrightarrow {CB} , \overrightarrow {CD} } \right)\\ = \dfrac{{( - 2).( - 5) + 4.( - 5)}}{{\sqrt {{2^2} + {4^2}} .\sqrt {{5^2} + {5^2}} }} =  - \dfrac{1}{{\sqrt {10} }} ,\\ \Rightarrow   \cos \left( {\overrightarrow {AB} , \overrightarrow {AD} } \right) + \cos \left( {\overrightarrow {CB} , \overrightarrow {CD} } \right) = 0   \\    \Rightarrow   \widehat {BAD} + \widehat {BCD} = {180^0}\end{array}\)

Vậy ABCD là tứ giác nội tiếp.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí