Bài 18 trang 41 SBT Hình học 10 Nâng cao


Giải bài tập Bài 18 trang 41 SBT Hình học 10 Nâng cao

Đề bài

Cho điểm \(A\) cố định nằm ngoài đường thẳng \(\Delta \), \(H\) là hình chiếu của \(A\) trên \(\Delta \). Với mỗi điểm \(M\) trên \(\Delta \), lấy điểm \(N\) trên tia \(AM\) sao cho \(\overrightarrow {AN} .\overrightarrow {AM}  = A{H^2}\). Tìm tập hợp các điểm \(N.\)

Lời giải chi tiết

 

(h.31). Ta có

\(\overrightarrow {AN} .\overrightarrow {AM}  = {\overrightarrow {AH} ^2}\)

\( \Leftrightarrow \overrightarrow {AN} .\overrightarrow {AM}  = \overrightarrow {AH} .\overrightarrow {AH}  = \overrightarrow {AH} .\overrightarrow {AM} \) ( theo công thức hình chiếu)

\(\eqalign{  &  \Leftrightarrow \overrightarrow {AN} .\overrightarrow {AM}  - \overrightarrow {AH} .\overrightarrow {AM}  = 0  \cr  &  \Leftrightarrow (\overrightarrow {AN}  - \overrightarrow {AH} )\overrightarrow {AM}  = 0  \cr  &  \Leftrightarrow \overrightarrow {HN} .\overrightarrow {AM}  = 0 \cr} \)

Vậy tập hợp các điểm \(N\) là đường tròn đường kính \(AH\).

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí