Bài 47 trang 45 SBT Hình học 10 Nâng cao


Giải bài tập Bài 47 trang 45 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai điểm \(A(-3 ; 2)\) và \(B(4 ; 3)\). Tìm tọa độ của:

LG a

 Điểm \(M\) trên trục \(Ox\) sao cho tam giác \(MAB\) vuông tại \(M.\)

Lời giải chi tiết:

Giả sử \(M(x ; 0) \in Ox \)

\(\Rightarrow\overrightarrow {AM} (x + 3 ;  - 2)  ;  \overrightarrow {BM} (x - 4 ;  - 3).\)

Tam giác \(MAB\) vuông tại \(M\) khi \(\overrightarrow {AM}  \bot \overrightarrow {BM} \) hay \(\overrightarrow {AM} .\overrightarrow {BM}  = 0\).

Từ đó ta có \((x+3).(x-4)+(-2).(-3)=0\)  hay  \(x^2-x-6=0.\)

Phương trình có hai nghiệm \(x_1=3,  x_2=-2.\)

Vậy có hai  điểm cần tìm là \(M_1(3 ; 0)  ; M_2(-2 ; 0).\)

LG b

Điểm \(N\) trên trục \(Oy\) sao cho \(NA=NB.\)

Lời giải chi tiết:

Giả sử \(N(0 ; y) \in  Oy\). Khi đó

\(\begin{array}{l}N{A^2} = N{B^2}\\ \Leftrightarrow   {(0 + 3)^2} + {(y - 2)^2} \\= {(0 - 4)^2} + {(y - 3)^2}\\ \Leftrightarrow  9 + {y^2} - 4y + 4 \\= 16 + {y^2} - 6y + 9\\ \Leftrightarrow   y = 6\end{array}\)

Vậy \(N=(0 ; 6).\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí