Bài 13 trang 40 SBT Hình học 10 Nâng cao


Giải bài tập Bài 13 trang 40 SBT Hình học 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Chứng minh công thức sau (với hai  vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) bất kì ):

\(\overrightarrow a .\overrightarrow b  = \dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2}).\)

Lời giải chi tiết

Ta có

\(\dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2})\)

\(= \dfrac{1}{2}({\overrightarrow a ^2} + {\overrightarrow b ^2} + 2\overrightarrow a .\overrightarrow b  - {\overrightarrow a ^2} - {\overrightarrow b ^2}) \)

\(= \overrightarrow a .\overrightarrow b .\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!