Lý thuyết phương trình đường thẳng trong không gian


1. Đường thẳng ∆ qua điểm M0(x0 ; y0 ; z0) có vectơ chỉ phương (a1 ; a2 ; a3) có phương trình tham số dạng.

1. Đường thẳng  ∆ qua điểm M0(x0 ; y0 ; z0) có vectơ chỉ phương  \(\overrightarrow{a}\)(a1 ; a2 ; a3) có phương trình tham số dạng:

\(\left\{\begin{matrix} x=x_{0}+ a_{1}t & & \\ y= y_{0}+a_{2}t & & \\ z=z_{0}+a_{3}t & & \end{matrix}\right.\), t ∈ R là tham số.

Nếu a1, a2, ađều khác không, ta viết phương trình trên ở dạng chính tắc:

\(\dfrac{x-x_{0}}{a_{1}}=\dfrac{y-y_{0}}{a_{2}}=\dfrac{z-z_{0}}{a_{3}}.\)

2. Cho đường thẳng ∆qua điểm M­1 và có vec tơ chỉ phương \(\overrightarrow{u_{1}}\), đường thẳng ∆qua điểm M­2  và có vec tơ chỉ phương \(\overrightarrow{u_{2}}\).

* ∆và ∆chéo nhau ⇔ ∆và ∆không nằm trong cùng một mặt phẳng ⇔ \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ]\overrightarrow{M_{1}M_{2}}\neq 0\).

* ∆và ∆song song ⇔ \(\left\{\begin{matrix} \overrightarrow{u_{1}}=k\overrightarrow{u_{2}}\\ M_{1}\in \Delta _{1}\\ M_{2}\notin \Delta _{2} \end{matrix}\right.\).

* ∆trùng với ∆2  ⇔ \(\overrightarrow{u_{1}}\), \(\overrightarrow{u_{2}}\), \(\overrightarrow{M_{1}M_{2}}\) là ba vectơ cùng phương.

* ∆cắt  ∆2  ⇔ \(\overrightarrow{u_{1}},\overrightarrow{u_{2}}\) không cùng phương và \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ]\overrightarrow{M_{1}M_{2}}= 0\).


Bình chọn:
4 trên 4 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài