Giải bài 3 trang 90 SGK Hình học 12


Xét vị trí tương đối của đường thẳng d và d' trong các trường hợp.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Xét vị trí tương đối của đường thẳng d và d' trong các trường hợp sau:

LG a

a) d: \(\left\{\begin{matrix} x=-3+2t & \\ y=-2+3t& \\ z=6+4t& \end{matrix}\right.\) và     d': \(\left\{\begin{matrix} x=5+t'& \\ y=-1-4t'& \\ z=20+t'& \end{matrix}\right.\) ;

Phương pháp giải:

Vị trí tương đối giữa hai đường thẳng d và d'. Gọi \(\overrightarrow a ;\,\overrightarrow {a'} \) lần lượt là VTCP của d và d', \({M_1} \in d,\,\,{M_2} \in d'\).

Điều kiện để hai đường thẳng d và d' song song: \(\left\{ \begin{array}{l}\overrightarrow a = k\overrightarrow {a'} \\M \in d,\,\,M \notin d'\end{array} \right.\,\).

Điều kiện để hai đường thẳng d và d' cắt nhau là \( \left[ {\overrightarrow a ;\overrightarrow {a'} } \right] \ne  \overrightarrow 0 \) và \(\left[ {\overrightarrow a ;\overrightarrow {a'} } \right].\overrightarrow {{M_1}{M_2}}  = 0\).

Điều kiện để hai đường thẳng d và d' chéo nhau: \(\left[ {\overrightarrow a ;\overrightarrow {a'} } \right].\overrightarrow {{M_1}{M_2}}  \ne 0\).

Lời giải chi tiết:

Đường thẳng \(d\) đi qua \(M_1( -3 ; -2 ; 6)\) và có vectơ chỉ phương \(\overrightarrow{u_{1}}(2 ; 3 ; 4)\).

Đường thẳng \(d'\) đi qua \(M_2( 5 ; -1 ; 20)\) và có vectơ chỉ phương \(\overrightarrow{u_{2}}(1 ; -4 ; 1)\).

Ta nhận thấy \(\overrightarrow{u_{1}}\), \(\overrightarrow{u_{2}}\) không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Ta có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 4\end{array}&\begin{array}{l}4\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}4\\1\end{array}&\begin{array}{l}2\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\1\end{array}&\begin{array}{l}3\\ - 4\end{array}\end{array}} \right|} \right) = \left( {19;2; - 11} \right)\) ; \(\overrightarrow{M_{1}M_{2}} = (8 ; 1 ; 14) \)

Mà \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ].\overrightarrow{M_{1}M_{2}} = (19.8 + 2 - 11.14) = 0\) nên \(d\) và \(d'\) cắt nhau.

Cách khác:

Xét hệ phương trình:\(\left\{\begin{matrix} -3+2t=5+t' & (1)\\ -2+3t=-1-4t' & (2) \\ 6+4t=20+t'& (3) \end{matrix}\right.\)

Từ (1) với (3), trừ vế với vế ta có \(2t = 6 => t = 3\), thay vào (1) có \(t' = -2\).

Từ đó \(d\) và \(d'\) có điểm chung duy nhất \(M(3 ; 7 ; 18)\). Do đó d và d' cắt nhau tại M.

LG b

b) d: \(\left\{\begin{matrix} x=1+t& \\ y=2+t& \\ z=3-t& \end{matrix}\right.\) và     d':  \(\left\{\begin{matrix} x=1+2t'& \\ y=-1+2t'& \\ z=2-2t'.& \end{matrix}\right.\)

Lời giải chi tiết:

Ta có : \(\overrightarrow{u_{1}}(1 ; 1 ; -1)\) là vectơ chỉ phương của d và \(\overrightarrow{u_{2}}(2 ; 2 ; -2)\) là vectơ chỉ phương của d' .

Ta thấy \(\overrightarrow{u_{1}}\) và \(\overrightarrow{u_{2}}\) cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm \(M(1 ; 2 ; 3) ∈d\), thay tọa độ điểm \(M\) vào phương trình \(d'\) ta được: \(\left\{ \begin{array}{l}1 = 1 + 2t'\\2 =  - 1 + 2t'\\3 = 2 - 2t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = \frac{3}{2}\\t' =  - \frac{1}{2}\end{array} \right.\left( {VN} \right)\)

Vậy \(M \notin d'\) nên \(d\) và \(d'\) song song.

Loigiaihay.com


Bình chọn:
4.4 trên 25 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí