CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Bình chọn:
4.7 trên 94 phiếu
Bài 1 trang 80 SGK Hình học 12 Nâng cao

Cho các vectơ: a) Tìm toạ độ của các vectơ đó. b) Tìm côsin của các góc c) Tính các tích vô hướng

Xem lời giải

Bài 2 trang 80 SGK Hình học 12 Nâng cao

Cho vectơ tùy ý khác. Chứng minh rằng

Xem lời giải

Bài 3 trang 81 SGK Hình học 12 Nâng cao

Tìm góc giữa hai vectơ trong mỗi trường hợp sau:

Xem lời giải

Bài 4 trang 81 SGK Hình học 12 Nâng cao

Biết góc giữa vectơ . Tìm k để vectơ vuông góc với vectơ

Xem lời giải

Bài 5 trang 81 SGK Hình học 12 Nâng cao

Cho điểm . a) Tìm toạ độ hình chiếu (vuông góc) của M trên các mặt phẳng toạ độ và trên các trục toạ độ. b) Tìm khoảng cách từ điểm M đến các mặt phẳng toạ độ, đến các trục toạ độ. c) Tìm toạ độ của các điểm đối xứng với M qua các mặt phẳng toạ độ.

Xem lời giải

Bài 6 trang 81 SKG Hình học 12 Nâng cao

Cho hai điểm. Tìm toạ độ điểm M chia đoạn thẳng AB theo tỉ số k

Xem lời giải

Bài 7 trang 81 SGK Hình học 12 Nâng cao

Cho hình bình hành ABCD với A(-3 ; -2 ; 0), B(3 ; -3 ; 1), C(5 ; 0 ; 2). Tìm toạ độ đỉnh D và tính góc giữa hai vectơ

Xem lời giải

Bài 8 trang 81 SGK Hình học 12 Nâng cao

a) Tìm toạ độ điểm M thuộc trục Ox sao cho M cách đều hai điểm A(1 ; 2 ; 3) và B(-3 ; -3 ; 2). b) Cho ba điểm. Tìm t để AB vuông góc với OC (O là gốc toạ độ).

Xem lời giải

Bài 9 trang 81 SGK Hình học 12 Nâng cao

Xét sự đồng phẳng của ba vectơ trong mỗi trường hợp sau:

Xem lời giải

Bài 10 trang 81 SGK Hình học 12 Nâng cao

Cho ba điểm a) Chứng minh A, B, C không thẳng hàng. b) Tính chu vi và diện tích tam giác ABC. c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A. d) Tính các góc của tam giác ABC.

Xem lời giải

Bài 11 trang 81 SGK Hình học 12 Nâng cao

Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2). a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện. b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó. c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

Xem lời giải

Bài 12 trang 82 SGK Hình học 12 Nâng cao

Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N là điểm sao cho . a) Tính độ dài đoạn thẳng MN. b) Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.

Xem lời giải

Bài 13 trang 82 SGK Hình học 12 Nâng cao

Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây :

Xem lời giải

Bài 14 trang 82 SGK Hình học 12 Nâng cao

Trong mỗi trường hợp sau, hãy viết phương trình mặt cầu : a) Đi qua ba điểm A(0 ; 8 ; 0), B(4; 6 ; 2), C(0 ; 12 ; 4) và có tâm nằm trên mp(Oyz); b) Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox; c) Có tâm I(1 ; 2 ; 3) và tiếp xúc với mp(Oyz).

Xem lời giải

Bài 15 trang 89 SGK Hình học 12 Nâng cao

Trong mỗi trường hợp sau, viết phương trình mặt phẳng: a) Đi qua ba điểm ; b) Đi qua hai điểm và song song với trục Oz ; c) Đi qua điểm (3; 2; -l) và song song với mặt phẳng có phương trình x –5y + z = 0; d) Đi qua hai điểm A(0 ; 1 ; 1), B(- 1 ; 0 ; 2) và vuông góc với mặt phẳng x – y + z – 1 = 0 ; e) Đi qua điểm M(a ; b ; c) (với ) và song song với một mặt phẳng toạ độ ; g) Đi qua điểm G(1 ; 2 ; 3) và cắt các trục toạ độ tại các điểm A, B, C sao cho G là trọng tâm tam giác ABC ; h) Đi

Xem lời giải

Bài 16 trang 89 SGK Hình học 12 Nâng cao

Xét vị trí tương đối của mỗi cặp mật phẳng cho bởi các phương trình sau:

Xem lời giải

Bài 17 trang 89 SGK Hình học 12 Nâng cao

Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây song song:

Xem lời giải

Bài 18 trang 90 SGK Hình học 12 Nâng cao

Cho hai mặt phẳng có phương trình là và Với giá trị nào của m thì: a) Hai mặt phẳng đó song song ; b) Hai mặt phẳng đó trùng nhau ; c) Hai mặt phẳng đó cắt nhau ; d) Hai mặt phẳng đó vuông góc?

Xem lời giải

Bài 19 trang 90 SGK Hình học 12 Nâng cao

Tìm tập hợp các điểm cách đều hai mặt phẳng trong mỗi trường hợp sau:

Xem lời giải

Bài 20 trang 90 SGK Hình học 12 Nâng cao

Tìm khoảng cách giữa hai mặt phẳng

Xem lời giải

Xem thêm

Bài viết được xem nhiều nhất