Bài 6 trang 90 SGK Hình học 12


Giải bài 6 trang 90 SGK Hình học 12. Tính khoảng cách giữa đường thẳng ∆ với mặt phẳng (α) : 2x - 2y + z +3 = 0.

Đề bài

Tính khoảng cách giữa đường thẳng: \(\Delta :\left\{ \matrix{x = - 3 + 2t \hfill \cr y = - 1 + 3t \hfill \cr z = - 1 + 2t \hfill \cr} \right.\) với mặt phẳng \((α)\) : \(2x - 2y + z + 3 = 0\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh \(\Delta //\left( \alpha  \right)\) (\(\left\{ \begin{array}{l}{\overrightarrow u _\Delta } \bot {\overrightarrow n _{\left( \alpha \right)}}\\M \in \Delta ,\,\,M \notin \left( \alpha \right)\end{array} \right.\)).

Khi đó \(d\left( {\Delta ;\left( \alpha  \right)} \right) = d\left( {M;\left( \alpha  \right)} \right)\).

Công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Lời giải chi tiết

Đường thẳng \(\displaystyle ∆\) qua điểm \(\displaystyle M(-3 ; -1 ; -1)\) có vectơ chỉ phương  \(\displaystyle \overrightarrow u (2 ; 3 ; 2)\).

Mặt phẳng \(\displaystyle (α)\) có vectơ pháp tuyến \(\displaystyle \overrightarrow n (2 ; -2 ; 1)\).

Ta có \(\displaystyle M ∉ (α)\) và \(\displaystyle \overrightarrow u .\overrightarrow n = 0\) nên \(\displaystyle ∆ // (α)\).

Do vậy  \(\displaystyle d(∆,(α)) = d(M,(α))\)

= \(\displaystyle {{| - 6 + 2 - 1 + 3|} \over {\sqrt {4 + 4 + 1} }} = {2 \over 3}\).

Cách khác:

Có thể chứng minh \(\displaystyle d//\left( \alpha  \right)\) bằng cách:

Xét phương trình:

2(-3 + 2t) – 2(-1 + 3t) + (-1 + 2t) + 3 = 0

⇔ 0t – 2 = 0

Phương trình vô nghiệm

⇒ (Δ) // (α).

Loigiaihay.com


Bình chọn:
3.8 trên 12 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài