Bài 3.59 trang 184 SBT giải tích 12


Giải bài 3.59 trang 184 sách bài tập giải tích 12. Thể tích khối tròn xoay tạo bởi phép quay quanh trục...

Đề bài

Thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle  Ox\) của hình phẳng giới hạn bởi các đường \(\displaystyle  y = {\sin ^{\frac{3}{2}}}x,y = 0,x = 0\) và \(\displaystyle  x = \frac{\pi }{2}\) bằng

A. \(\displaystyle  1\)                       B. \(\displaystyle  \frac{2}{7}\)

C. \(\displaystyle  2\pi \)                    D. \(\displaystyle  \frac{2}{3}\pi \)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính thể tích \(\displaystyle  V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {{{\sin }^{\frac{3}{2}}}x} \right)}^2}dx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}xdx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \)

\(\displaystyle   =  - \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)d\left( {\cos x} \right)} \) \(\displaystyle   =  - \pi .\left. {\left( {\cos x - \frac{{{{\cos }^3}x}}{3}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   =  - \pi \left( { - 1 + \frac{1}{3}} \right) = \frac{{2\pi }}{3}\)

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài