Bài 3.57 trang 183 SBT giải tích 12


Giải bài 3.57 trang 183 sách bài tập giải tích 12. Khẳng định nào sau đây sai?...

Đề bài

Khẳng định nào sau đây sai?

A. \(\displaystyle  \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  < \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \)

B. \(\displaystyle  \int\limits_{\frac{\pi }{4}}^1 {\frac{{\tan x}}{x}dx}  > \int\limits_{\frac{\pi }{4}}^1 {\frac{{\cot x}}{x}dx} \)

C. \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {{{\sin }^4}xdx}  < \int\limits_0^{\frac{\pi }{2}} {dx} \)

D. \(\displaystyle  \int\limits_1^e {\frac{{\ln x}}{x}dx}  < \int\limits_1^e {\frac{{{e^x}}}{x}dx} \)

Phương pháp giải - Xem chi tiết

Sử dụng ý nghĩa hình học của tích phân: Nếu \(\displaystyle  f\left( x \right) \ge 0,\forall x \in \left[ {a;b} \right]\) thì \(\displaystyle  S = \int\limits_a^b {f\left( x \right)dx}  \ge 0\).

Lời giải chi tiết

Đáp án A:

Xét \(\displaystyle  I = \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  - \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \) \(\displaystyle   = \int\limits_{\frac{\pi }{2}}^\pi  {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx} \)

Dễ thấy trên đoạn \(\displaystyle  \left[ {\frac{\pi }{2};\pi } \right]\) thì \(\displaystyle  x > 0\) và \(\displaystyle  \sin x > 0 > \cos x\) \(\displaystyle   \Rightarrow \sin x - \cos x > 0\)

Suy ra \(\displaystyle  \frac{{\sin x - \cos x}}{x} > 0\) \(\displaystyle   \Rightarrow I = \int\limits_{\frac{\pi }{2}}^\pi  {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx}  > 0\)

\(\displaystyle   \Rightarrow \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  > \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \).

Vậy A sai.

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài