Bài 3.46 trang 181 SBT giải tích 12


Giải bài 3.46 trang 181 sách bài tập giải tích 12. Tính diện tích các hình phẳng giới hạn bởi các đường sau:...

Đề bài

Tính diện tích các hình phẳng giới hạn bởi các đường sau:

a) \(\displaystyle  y = x - 1 + \frac{{\ln x}}{x},y = x - 1\) và \(\displaystyle  x = e\);

b) \(\displaystyle  y = {x^3} - {x^2}\) và \(\displaystyle  y = \frac{1}{9}(x - 1)\);

Phương pháp giải - Xem chi tiết

- Giải phương trình hoành độ giao điểm tìm nghiệm \(\displaystyle  a \le {x_1} < {x_2} < ... < {x_n} \le b\)

- Sử dụng công thức tính diện tích hình phẳng:

\(\displaystyle  S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \(\displaystyle   = \int\limits_a^{{x_1}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \(\displaystyle   + \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \(\displaystyle   + ... + \int\limits_{{x_n}}^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

\(\displaystyle   = \left| {\int\limits_a^{{x_1}} {\left( {f\left( x \right) - g\left( x \right)} \right)dx} } \right|\) \(\displaystyle   + \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {f\left( x \right) - g\left( x \right)} \right)dx} } \right|\) \(\displaystyle   + ... + \left| {\int\limits_{{x_n}}^b {\left( {f\left( x \right) - g\left( x \right)} \right)dx} } \right|\)

Quảng cáo

Lộ trình SUN 2025

Lời giải chi tiết

a) Ta có: \(\displaystyle  x - 1 + \frac{{\ln x}}{x} = x - 1\)\(\displaystyle   \Leftrightarrow \frac{{\ln x}}{x} = 0 \Leftrightarrow x = 1\).

Khi đó \(\displaystyle  S = \int\limits_1^e {\left| {x - 1 + \frac{{\ln x}}{x} - x + 1} \right|dx} \) \(\displaystyle   = \int\limits_1^e {\left| {\frac{{\ln x}}{x}} \right|dx} \) \(\displaystyle   = \int\limits_1^e {\frac{{\ln x}}{x}dx} \) \(\displaystyle   = \int\limits_1^e {\ln xd\left( {\ln x} \right)} \) \(\displaystyle   = \left. {\frac{{{{\ln }^2}x}}{2}} \right|_1^e = \frac{1}{2}\)

b) Ta có: \(\displaystyle  {x^3} - {x^2} = \frac{1}{9}\left( {x - 1} \right)\) \(\displaystyle   \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - \frac{1}{9}} \right) = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{3}\\x =  - \frac{1}{3}\end{array} \right.\)

Khi đó:

\(\displaystyle  S = \int\limits_{ - \frac{1}{3}}^1 {\left| {{x^3} - {x^2} - \frac{1}{9}\left( {x - 1} \right)} \right|dx} \)\(\displaystyle   = \int\limits_{ - \frac{1}{3}}^{\frac{1}{3}} {\left| {{x^3} - {x^2} - \frac{1}{9}\left( {x - 1} \right)} \right|dx} \) \(\displaystyle   + \int\limits_{\frac{1}{3}}^1 {\left| {{x^3} - {x^2} - \frac{1}{9}\left( {x - 1} \right)} \right|dx} \)

\(\displaystyle   = \left| {\int\limits_{ - \frac{1}{3}}^{\frac{1}{3}} {\left[ {{x^3} - {x^2} - \frac{1}{9}\left( {x - 1} \right)} \right]dx} } \right|\) \(\displaystyle   + \left| {\int\limits_{\frac{1}{3}}^1 {\left[ {{x^3} - {x^2} - \frac{1}{9}\left( {x - 1} \right)} \right]dx} } \right|\)

\(\displaystyle   = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3} - \frac{1}{9}.\frac{{{x^2}}}{2} + \frac{1}{9}x} \right)} \right|_{ - \frac{1}{3}}^{\frac{1}{3}}} \right|\) \(\displaystyle   + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^3}}}{3} - \frac{1}{9}.\frac{{{x^2}}}{2} + \frac{1}{9}x} \right)} \right|_{\frac{1}{3}}^1} \right|\)

\(\displaystyle   = \left| {\frac{7}{{324}} + \frac{1}{{36}}} \right| + \left| { - \frac{1}{{36}} - \frac{7}{{324}}} \right| = \frac{8}{{81}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.