Bài 3.50 trang 182 SBT giải tích 12


Giải bài 3.50 trang 182 sách bài tập giải tích 12. Nếu tích phân từ a đến d...

Đề bài

Nếu \(\displaystyle  \int\limits_a^d {f\left( x \right)dx}  = 5,\int\limits_b^d {f\left( x \right)dx}  = 2\) với \(\displaystyle  a < d < b\) thì \(\displaystyle  \int\limits_a^b {f\left( x \right)dx} \) bằng

A. \(\displaystyle   - 2\)                   B. \(\displaystyle  8\)

C. \(\displaystyle  0\)                      D. \(\displaystyle  3\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất \(\displaystyle  \int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx} \) với \(\displaystyle  a < b < c\).

Lời giải chi tiết

Ta có: \(\displaystyle  \int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^d {f\left( x \right)dx}  + \int\limits_d^b {f\left( x \right)dx} \)\(\displaystyle   = 5 - 2 = 3\).

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài