Bài 3.15 trang 139 SBT hình học 11


Giải bài 3.15 trang 139 sách bài tập hình học 11. Chứng minh rằng AB và PQ vuông góc với nhau...

Đề bài

Cho tứ diện \(ABCD\) trong đó \(AB \bot AC,AB \bot B{\rm{D}}\). Gọi \(P\) và \(Q\) lần lượt là trung điểm của \(AB\) và \(CD\). Chứng minh rằng \(AB\) và \(PQ\) vuông góc với nhau.

Phương pháp giải - Xem chi tiết

Kiểm tra tích vô hướng \(\overrightarrow {PQ} .\overrightarrow {AB}=0\) và kết luận.

Lời giải chi tiết

\(\eqalign{
& \overrightarrow {PQ} = \overrightarrow {PA} + \overrightarrow {AC} + \overrightarrow {CQ} \,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr 
& \overrightarrow {PQ} = \overrightarrow {PB} + \overrightarrow {B{\rm{D}}} + \overrightarrow {DQ} \,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)

Cộng từng vế (1) và (2) ta có:

\(2\overrightarrow {PQ}  = \overrightarrow {AC}  + \overrightarrow {B{\rm{D}}} \) 

Suy ra \(2\overrightarrow {PQ} .\overrightarrow {AB}  = \overrightarrow {AC} .\overrightarrow {AB}  + \overrightarrow {B{\rm{D}}} .\overrightarrow {AB}  = 0\)

Hay \(\overrightarrow {PQ} .\overrightarrow {AB}  = 0\), tức là \(PQ \bot AB\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài