Bài 3.9 trang 138 SBT hình học 11


Đề bài

Cho tứ giác \(ABCD\). Gọi \(M, N, P, Q\) lần lượt là trung điểm của các đoạn \(AC, BD, AD\) và có \(MN = PQ\). Chứng minh rằng \(AB ⊥ CD\).

Phương pháp giải - Xem chi tiết

Ta cần chứng minh \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Lời giải chi tiết

Ta cần chứng minh \(\displaystyle \overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Đặt \(\displaystyle \overrightarrow {AB}  = \overrightarrow b ,\,\,\overrightarrow {AC}  = \overrightarrow c ,\,\,\overrightarrow {AD}  = \overrightarrow d \). Ta có:

\(\displaystyle \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}\) \(\displaystyle   =  - {1 \over 2}\overrightarrow {AC}  + {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\)

Suy ra \(\displaystyle \overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow b  + \overrightarrow d  - \overrightarrow c } \right)\)

\(\displaystyle \eqalign{
& \overrightarrow {QP} = \overrightarrow {QA} + \overrightarrow {AP} \cr 
& = - {1 \over 2}\overrightarrow {A{\rm{D}}} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr 
& = {1 \over 2}\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right) \cr} \)

Theo giả thiết ta có:

\(\displaystyle MN = PQ \Leftrightarrow {\overrightarrow {MN} ^2} = {\overrightarrow {QP} ^2}\)

\(\displaystyle \eqalign{
& {\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)^2} = {\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right)^2} \cr 
& \Leftrightarrow \overrightarrow b .\overrightarrow d - \overrightarrow b .\overrightarrow c = \overrightarrow b .\overrightarrow c - \overrightarrow b .\overrightarrow d \cr 
& \Leftrightarrow 2\overrightarrow b .\overrightarrow d - 2\overrightarrow b .\overrightarrow c = 0 \cr 
& \Leftrightarrow \overrightarrow b .\left( {\overrightarrow d - \overrightarrow c } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\left( {\overrightarrow {A{\rm{D}}} - \overrightarrow {AC} } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \Leftrightarrow \overrightarrow {AB} \bot \overrightarrow {C{\rm{D}}} \cr} \)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.