Bài 3.9 trang 138 SBT hình học 11>
Giải bài 3.9 trang 138 sách bài tập hình học 11. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, AD và có MN = PQ . Chứng minh rằng AB ⊥ CD...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tứ giác \(ABCD\). Gọi \(M, N, P, Q\) lần lượt là trung điểm của các đoạn \(AC, BD, AD\) và có \(MN = PQ\). Chứng minh rằng \(AB ⊥ CD\).
Phương pháp giải - Xem chi tiết
Ta cần chứng minh \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0\)
Lời giải chi tiết
Ta cần chứng minh \(\displaystyle \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0\)
Đặt \(\displaystyle \overrightarrow {AB} = \overrightarrow b ,\,\,\overrightarrow {AC} = \overrightarrow c ,\,\,\overrightarrow {AD} = \overrightarrow d \). Ta có:
\(\displaystyle \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN}\) \(\displaystyle = - {1 \over 2}\overrightarrow {AC} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\)
Suy ra \(\displaystyle \overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)\)
\(\displaystyle \eqalign{
& \overrightarrow {QP} = \overrightarrow {QA} + \overrightarrow {AP} \cr
& = - {1 \over 2}\overrightarrow {A{\rm{D}}} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr
& = {1 \over 2}\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right) \cr} \)
Theo giả thiết ta có:
\(\displaystyle MN = PQ \Leftrightarrow {\overrightarrow {MN} ^2} = {\overrightarrow {QP} ^2}\)
\(\displaystyle \eqalign{
& {\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)^2} = {\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right)^2} \cr
& \Leftrightarrow \overrightarrow b .\overrightarrow d - \overrightarrow b .\overrightarrow c = \overrightarrow b .\overrightarrow c - \overrightarrow b .\overrightarrow d \cr
& \Leftrightarrow 2\overrightarrow b .\overrightarrow d - 2\overrightarrow b .\overrightarrow c = 0 \cr
& \Leftrightarrow \overrightarrow b .\left( {\overrightarrow d - \overrightarrow c } \right) = 0 \cr
& \Leftrightarrow \overrightarrow {AB} .\left( {\overrightarrow {A{\rm{D}}} - \overrightarrow {AC} } \right) = 0 \cr
& \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \Leftrightarrow \overrightarrow {AB} \bot \overrightarrow {C{\rm{D}}} \cr} \)
Loigiaihay.com


- Bài 3.10 trang 138 SBT hình học 11
- Bài 3.11 trang 139 SBT hình học 11
- Bài 3.12 trang 139 SBT hình học 11
- Bài 3.13 trang 139 SBT hình học 11
- Bài 3.14 trang 139 SBT hình học 11
>> Xem thêm