Bài 3.9 trang 138 SBT hình học 11


Giải bài 3.9 trang 138 sách bài tập hình học 11. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, AD và có MN = PQ . Chứng minh rằng AB ⊥ CD...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tứ giác \(ABCD\). Gọi \(M, N, P, Q\) lần lượt là trung điểm của các đoạn \(AC, BD, AD\) và có \(MN = PQ\). Chứng minh rằng \(AB ⊥ CD\).

Phương pháp giải - Xem chi tiết

Ta cần chứng minh \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Lời giải chi tiết

Ta cần chứng minh \(\displaystyle \overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Đặt \(\displaystyle \overrightarrow {AB}  = \overrightarrow b ,\,\,\overrightarrow {AC}  = \overrightarrow c ,\,\,\overrightarrow {AD}  = \overrightarrow d \). Ta có:

\(\displaystyle \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}\) \(\displaystyle   =  - {1 \over 2}\overrightarrow {AC}  + {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\)

Suy ra \(\displaystyle \overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow b  + \overrightarrow d  - \overrightarrow c } \right)\)

\(\displaystyle \eqalign{
& \overrightarrow {QP} = \overrightarrow {QA} + \overrightarrow {AP} \cr 
& = - {1 \over 2}\overrightarrow {A{\rm{D}}} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr 
& = {1 \over 2}\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right) \cr} \)

Theo giả thiết ta có:

\(\displaystyle MN = PQ \Leftrightarrow {\overrightarrow {MN} ^2} = {\overrightarrow {QP} ^2}\)

\(\displaystyle \eqalign{
& {\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)^2} = {\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right)^2} \cr 
& \Leftrightarrow \overrightarrow b .\overrightarrow d - \overrightarrow b .\overrightarrow c = \overrightarrow b .\overrightarrow c - \overrightarrow b .\overrightarrow d \cr 
& \Leftrightarrow 2\overrightarrow b .\overrightarrow d - 2\overrightarrow b .\overrightarrow c = 0 \cr 
& \Leftrightarrow \overrightarrow b .\left( {\overrightarrow d - \overrightarrow c } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\left( {\overrightarrow {A{\rm{D}}} - \overrightarrow {AC} } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \Leftrightarrow \overrightarrow {AB} \bot \overrightarrow {C{\rm{D}}} \cr} \)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí