Bài 1.90 trang 42 SBT giải tích 12>
Giải bài 1.90 trang 42 sách bài tập giải tích 12. Số giao điểm của đồ thị hàm số...
Đề bài
Số giao điểm của đồ thị hàm số \(y = \left( {x - 3} \right)\left( {{x^2} + x + 4} \right)\) với trục hoành là:
A. \(2\) B. \(3\)
C. \(0\) D. \(1\)
Phương pháp giải - Xem chi tiết
- Xét phương trình hoành độ giao điểm tìm nghiệm.
- Số nghiệm của phương trình ứng với số giao điểm của đồ thị hàm số với trục hoành.
Lời giải chi tiết
Phương trình hoành độ giao điểm: \(\left( {x - 3} \right)\left( {{x^2} + x + 4} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\{x^2} + x + 4 = 0\left( {VN} \right)\end{array} \right.\) \( \Leftrightarrow x = 3\)
Vậy đồ thị hàm số có \(1\) điểm chung duy nhất với trục hoành.
Chọn D.
Chú ý:
x2 + x + 4 > 0 với mọi x vì a=1 < 0 và \(\Delta = 1 - 4.1.4 = - 15 < 0\).
Loigiaihay.com
- Bài 1.91 trang 42 SBT giải tích 12
- Bài 1.92 trang 42 SBT giải tích 12
- Bài 1.93 trang 42 SBT giải tích 12
- Bài 1.94 trang 42 SBT giải tích 12
- Bài 1.95 trang 43 SBT giải tích 12
>> Xem thêm