Bài 1.70 trang 38 SBT giải tích 12


Đề bài

Biểu thức tổng quát của hàm số có đồ thị như hình \(1.6\) là:

A. \(y = a{x^2} + bx + c\) với \(a \ne 0\).

B. \(y = a{x^3} + cx + d\) với \(a < 0\).

C. \(y = a{x^3} + b{x^2} + cx + d\) với \(a > 0\) và \({b^2} - 3ac > 0\).

D. \(y = {x^3}\).

Phương pháp giải - Xem chi tiết

- Nhận xét dáng đồ thị, số điểm cực trị và loại đáp án.

Lời giải chi tiết

Quan sát dáng đồ thị ta thấy:

+ Đây là đồ thị hàm đa thức bậc ba. Loại A.

+ Có \(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \) nên hệ số \(a > 0\). Loại B.

+ Đáp án D có \(y' = 3{x^2} \ge 0,\forall x\) nên hàm số đồng biến trên \(\mathbb{R}\) và không có cực trị nên loại D.

Chọn C.

Chú ý:

Đáp án C có \(y' = 3a{x^2} + 2bx + c\) và \(\Delta ' = {b^2} - 3ac > 0\) nên phương trình \(y' = 0\) có hai nghiệm phân biệt hay đồ thị hàm số có hai điểm cực trị.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.