Bài 1.58 trang 36 SBT giải tích 12


Giải bài 1.58 trang 36 sách bài tập giải tích 12. Tìm giá trị của tham số m để hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị của tham số \(m\) để hàm số

LG a

\(y = {x^3} + (m + 3){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' = 3{x^2} + 2(m + 3)x + m\)

Hàm số đạt cực tiểu tại \(x = 1\) thì: \(y'(1) = 0 \Leftrightarrow 3m + 9 = 0 \Leftrightarrow m =  - 3\)

Thử lại, \(m =  - 3\) thì \(y = {x^3} - 3x - 2\).

Khi đó, \(y' = 3{x^2} - 3 = 0 \Leftrightarrow x =  \pm 1\).

\(y'' = 6x;y''(1) = 6 > 0\) nên \(x = 1\) là điểm cực tiểu của hàm số (thỏa mãn yêu cầu)

Suy ra hàm số đạt cực tiểu tại \(x = 1\) khi \(m = 3\)

LG b

\(y =  - \dfrac{1}{3}({m^2} + 6m){x^3} - 2m{x^2} + 3x + 1\)  đạt cực đại tại \(x =  - 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' =  - ({m^2} + 6m){x^2} - 4mx + 3\)

\(y'( - 1) =  - {m^2} - 6m + 4m + 3\)\( = ( - {m^2} - 2m - 1) + 4 =  - {(m + 1)^2} + 4\)

Hàm số đạt cực đại tại \(x =  - 1\) thì :

\(y'( - 1) =  - {(m + 1)^2} + 4 = 0\)\( \Leftrightarrow {(m + 1)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m =  - 3\\m = 1\end{array} \right.\)

Thử lại,

+) Với \(m =  - 3\) ta có \(y' = 9{x^2} + 12x + 3\)

\( \Rightarrow y'' = 18x + 12\)\( \Rightarrow y''\left( { - 1} \right) =  - 18 + 12 =  - 6\; < 0\)

Suy ra hàm số đạt cực đại tại \(x =  - 1\) (thỏa mãn).

+) Với \(m = 1\) ta có:

\(y' =  - 7{x^2} - 4x + 3\)\( \Rightarrow y'' =  - 14x - 4\) \( \Rightarrow y''( - 1) = 10 > 0\)

Suy ra hàm số đạt cực tiểu tại \(x =  - 1\) (loại).

Kết luận: Hàm số đã cho đạt cực đại tại \(x =  - 1\) khi \(m =  - 3\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài