Bài 1.68 trang 38 SBT giải tích 12


Giải bài 1.68 trang 38 sách bài tập giải tích 12. Hàm số đạt cực tiểu tại x = 1 khi:...

Đề bài

Hàm số \(y = {x^3} + \left( {m + 3} \right){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\) khi:

A. \(m = 1\)            B. \(m = 2\)

C. \(m =  - 3\)        D. \(m = 4\)

Phương pháp giải - Xem chi tiết

Hàm đa thức bậc ba \(y = f\left( x \right)\) đạt cực tiểu tại \(x = {x_0}\) \( \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) > 0\end{array} \right.\).

Lời giải chi tiết

Ta có: \(y' = 3{x^2} + 2\left( {m + 3} \right)x + m\); \(y'' = 6x + 2\left( {m + 3} \right)\)

Hàm số đã cho đạt cực tiểu tại \(x = 1\) \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y''\left( 1 \right) > 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3 + 2\left( {m + 3} \right) + m = 0\\6 + 2\left( {m + 3} \right) > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
3m + 9 = 0\\
2m + 12 > 0
\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m =  - 3\\m >  - 6\end{array} \right. \Leftrightarrow m =  - 3\)

Chọn C.

Cách khác:

y' = 3x2 + 2(m + 3)x + m

Hàm số đạt cực tiểu tại x=1 thì

y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 m = -3

Với m = -3, y' = 3x2 - 3 y''(x) = 6x.

Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu tại x=1. (thỏa mãn)

Vậy m = -3.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài